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A Additional Derivations

A.1 Time-varying Approximates Nonlinear

Here, we present the derivation of the OLS approximation to a nonlinear DGP.

Assumption 1 (DGP).
yi = f (xi) + ε i, ε i ∼ N (0, σ2).

We state explicitly the relationship of xi and ε i, which will be useful when assessing the conver-
gence of the OLS estimator.

Remark 1 (Uncorrelated errors). E(ε i · xi) = 0 (directly from the DGP).

We require f to be differentiable for the Taylor expansion.

Assumption 2 (Differentiable). f is differentiable up to order K > 2.

Under Assumption 2 we can write f using its Taylor expansion of degree 1 around x̄ = 1
n ∑n

i=1 xi,

f (x) = f (x̄) + f ′(x̄)(x − x̄) + R1(x) (A-1)

where

R1(x) =
f ′′(ξ)

2
(x − x̄)2 (Lagrange form)

=

x∫
x̄

f ′′(t)
1!

(x − t)dt (Integral form)

with ξ between x and x̄.
Now, suppose we took data generated from this process, and approximated it with a local

linear model, such that:
yi = b0 + b1xi + ϵi, (A-2)

for a region around xi. The corresponding OLS estimator is given by:

b̂1 =
∑i(xi − x̄)(yi − ȳ)

∑i(xi − x̄)2 (A-3)

b̂0 = ȳ − b̂1 x̄

Note that by definition

ϵi = yi − (b0 + b1xi) = [ f (xi)− (b0 + b1xi)] + ε i. (A-4)
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We can rewrite (A-3) as well using (A-1)

∑
i
(xi − x̄)(yi − ȳ) = ∑

i
(xi − x̄) [ f (xi) + ε i]− ȳ ∑

i
(xi − x̄)

= ∑
i
(xi − x̄)

[
f (x̄) + f ′(x̄)(xi − x̄) + R1(xi) + ε i

]
= f ′(x̄)∑

i
(xi − x̄)2 + ∑

i
(xi − x̄)R1(xi) + ∑

i
(xi − x̄)ε i

= f ′(x̄)∑
i
(xi − x̄)2 +

1
2 ∑

i
f ′′(ξi)(xi − x̄)3 + ∑

i
(xi − x̄)ε i (A-5)

Now replacing (A-5) in (A-3), we have

b̂1 =
1

∑i(xi − x̄)2

[
f ′(x̄)∑

i
(xi − x̄)2 +

1
2 ∑

i
f ′′(ξi)(xi − x̄)3 + ∑

i
(xi − x̄)ε i

]

= f ′(x̄) +
1
2

1
n ∑i f ′′(ξi)(xi − x̄)3

1
n ∑i(xi − x̄)2

+
1
n ∑i(xi − x̄)ε i
1
n ∑i(xi − x̄)2

(A-6)

A.2 Nonlinear Approximates Time-varying

Consider a true data generating process given (as before) by,

yt = βt · xt + εt, εt ∼ N (0, σ2) (A-7)

where we assume that the time-varying effectiveness, βt, can be written as B(t), a continuous
function.

Proposition 1. Marketing effectiveness, βt, can be expressed as a function of spending, xt, for all non-null
spending, i.e., B(t) = h(xt) ∀t : xt ̸= 0 for some function h : R \ {0} → R; if and only if the DGP in
Equation A-7 can be written as

yt = f (xt) + εt, ∀t (A-8)

where f (x) =

h(x) · x, x ̸= 0

0 x = 0.

Note that the function doesn’t have to exist for null values of spending (since βt does not
matter in that case, any value would work).

Proof. ⇒ Consider xt ̸= 0. Just replacing βt = h(xt), in Equation A-7 we have

yt = βt · xt + εt = h(xt) · xt + εt
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Now for xt = 0, we have that yt = βt · 0 + εt = 0 + εt. Finally, if we define

f (x) =

h(x) · x, x ̸= 0

0 x = 0.

we have that yt = f (xt) + εt.

⇐ Assume there is a function f (x), such that ∀t : yt = βt · xt + εt = f (xt) + εt; and that there
is no function h : R \ {0} → R such that B(t) = h(xt), ∀t : xt ̸= 0.

Then, the second condition implies that if such a function does not exist, there must be at
least two periods t and t′ such that

βt ̸= βt′ and xt = xt′ ̸= 0,

i.e., there is at least a one one-to-many relation between x and β. Then, the first assumption
implies that

βt · xt = f (xt)

= f (xt′)

= βt′ · xt′

= βt′ · xt

xt ̸= 0 =⇒ βt = βt′ ,

which is a contradiction.

Condition 1 (Strictly Monotonic Spending). Suppose xt can be expressed as a strictly monotonic func-
tion of t, denoted X(t). Then the DGP in (A-7) can be fully expressed as a static nonlinear DGP. In such
cases, X−1(x) exists, and each spend level x can have at most a single period t where such spend was
observed, which implies that βt = B(X−1(xt)) and

f (x) = B(X−1(x)) · x.

Proof. It is easy to verify that this condition satisfies Proposition 1 with h(x) = B(X−1(x)).

Definition 1 (Parent Process). pt is called a parent process for xt and βt if there exist functions X (z) and
B(z) such that xt = X (pt) and βt = B(pt).

Condition 2 (Invertible Parent Relationship). Assume there exists a parent process for xt and βt, pt.
If X (pt) is invertible, then the DGP in (A-7) can be fully expressed as a static nonlinear DGP, such that
βt = B(X−1(xt)) and f (x) = B(X−1(x)) · x.
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Proof. Just replace h(x) = B(X−1(x)) to satisfy the condition in Proposition 1.
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B Setting Hyperparameters for GP Models

In this appendix, we describe how we set hyperparameters for GP models for simulations and
empirical applications.

B.1 Simulations

To illustrate a general point of the conflation between nonlinear and time-varying effects, we em-
ploy straightforward GP models with default priors. In particular, our nonlinear model is a direct
implementation of the standard GP regression in Stan (Stan Development Team 2024),1 which
itself follows Williams and Rasmussen (2006). The model standardizes the data and utilizes a
standard normal prior for all unconstrained and a half-normal prior for all positive coefficients.

For the time-varying model, we again implemented the model in Stan, using data standard-
ization similar to the nonlinear GP and a weakly informative prior for the lengthscale of the
GP. Specifically, following the guidance from Stan Development Team (2024), we use an Inverse
Gamma distribution for its zero-avoiding property, with parameters InvGamma(2, 30). The 95%
interval of this distribution is from 5 to 124, which ensures that a reasonable range of lengthscales
for our number of periods, 100, are likely. The amplitude and the noise standard deviation are set
to have half-normal priors, consistent with ranges used in our simulation DGP.

B.2 Classic Advertising Datasets

For the classic advertising datasets — DWC and seasonally-adjusted Lydia Pinkham — we used
very similar priors to the simulations. Specifically, for the nonlinear model, the priors were un-
changed. For time-varying model, weakly informative normal and half-normal priors were used
for all parameters except the lengthscale, which was given an InvGamma(5, 200) prior. Follow-
ing the reasoning above, this prior avoids very low values, and puts probability mass on smooth
functions, with lengthscales between roughly 20 and 120. Note that, while this prior induces sig-
nificant smoothing, the results are also robust to using less informative priors.

B.3 Modern MMM Data

For the multichannel Nielsen data, we construct a more sophisticated set of models that takes into
account trend and seasonality, national holidays, and promotions. To handle varying ranges of
the spending and sales across channels and brands in our sample, all data is standardized within
the models.

Trend and Seasonality Both models include a time-varying intercept, that includes trend and
seasonality components. We capture the trend component with a GP with a half-normal amplitude
prior, and a normal lengthscale prior with parameters N (T, T

8 ), where T is the total number of time

1https://avehtari.github.io/casestudies/Motorcycle/motorcycle_gpcourse.html
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periods. This ensures that the trend is sufficiently smooth, and thus will not overfit the data. The
seasonality component is captured by a GP with a periodic kernel, where the period is set to 52
weeks (yearly periodicity), the amplitude prior is again half-normal, and the lengthscale prior is
N (0.5π, 0.25π). This prior has been used previously by Dew et al. (2024) as a weakly informative
prior over the lengthscale of the periodic kernel.

National Holidays We include dummy variables for 11 weeks of national holidays. The co-
efficients are assumed to be drawn from a normal distribution Normal(µh, σh), where µh has a
standard normal and σh has a half-normal priors.

Promotions The coefficient on promotions has a standard normal prior.

Main Nonlinear GP The main multivariate GP in the nonlinear model consists of additive, one-
per-channel components, each having its own amplitude and lengthscale. Since the spending in
all channels, as well as sales, is standardized, we chose a half-normal prior for the amplitudes
and an inverse gamma prior for the lengthscales. The specific inverse gamma prior we choose is
InvGamma(2, 3), which has 95% of its mass between 0.5 and 12, resulting in a weakly informative
prior for relatively smooth functions over the range of possible values of standardized spending.

Main Time-varying GP The main multivariate GP in the time-varying model consists of one-
per-channel components over time that are multiplied by their respective channel spendings and
added. Each component has its own amplitude and lengthscale. Similarly to the nonlinear model,
we chose a half-normal prior for the amplitudes. For the lengthscales, we chose an InvGamma(2, 30)
prior, with 95% interval in between 5 and 124. Given the range of this GPs input (time), which
spans 1-104, this results in a weakly informative prior resulting in relatively smooth functions over
this interval.
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C Other Methods for Nonlinear and Time-varying Effects

While our focus in the main body of the paper is on using GPs to capture nonlinear and time-
varying effects, due to their ease for simulating relatively smooth functions, and their broad ap-
plicability across the model classes we are interested in, the conflation issue is not specific to GPs.
Thus, in this section, we illustrate two alternative methods for capturing nonlinear and time-
varying effects — B-splines and random walks — and show that the conflation issue still emerges.
We first briefly describe these alternatives, then show how they can be applied in our focal context,
using the introductory example from the paper as an illustration.

C.1 B-splines

To begin, we focus on a common alternative to GPs for estimating unknown functions: splines.
Specifically, we use B-splines, implemented, as with our focal specification, in a Bayesian fashion
using Stan (Lang and Brezger 2004; Stan Development Team 2024). In a spline specification, an
unknown function f (x) is modeled as a linear combination of nonlinear basis functions:

f (x) =
J

∑
j=1

ajBj(x). (A-9)

For B-splines, these basis functions take the form of piecewise polynomials of a given order k,
defined over a series of knots at locations ℓ1, . . . , ℓM, where M is selected a priori. For the sake of
concision, we do not exhaustively review B-splines here. We refer interested readers to Lang and
Brezger (2004). B-splines can not only be used to flexibly approximate functions of interest, but can
also be adapted to have special properties, like monotonicity, which may be useful in the context
of MMM but are difficult to enforce in GPs (Brezger and Steiner 2008). Similar specifications have
been used in marketing (e.g., Kim et al. 2007; Boughanmi and Ansari 2021; Haschka 2023).

C.2 Random Walk

For time-varying models, dynamic linear and state-space specifications have enjoyed tremendous
popularity in marketing, as reviewed in the main body of the paper. The simplest such specifica-
tion is a random walk, wherein a time-varying parameter βt is modeled as:

βt ∼ N (βt−1, σ2
β). (A-10)

Such a specification has been used by, e.g., Winer (1979), and is a simple version of the model
used in many other papers, including, e.g., Van Heerde et al. (2004). In this random walk spec-
ification, σβ plays the role of a regularizer, controlling how much the parameter is allowed to
vary, period-by-period. To employ this model within our MMM framework to estimate time-
varying coefficients, we again use a Bayesian implementation in Stan, setting the prior of σβ to be
HalfNormal(0, 1).
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Figure A-1: Conflation Using B-splines and Random Walk
At left, the fit of the nonlinear B-splines model and the time-varying random walk model on the data
from Figure 1 in the main body of the paper, illustrating the conflation. At right, the recovery of βt
by the time-varying random walk model.

C.3 Illustration

To illustrate these methods, and demonstrate the persisting conflation, we return to the introduc-
tory example, plotted in Figure 1 of the main body of the paper. The two models we implement
are (1) a nonlinear model with:

yt = f (xt) + ϵt,

where f (xt) is estimated using B-splines with order k = 3 (i.e., cubic) and 10 knots, and (2) a
time-varying coefficients model with,

yt = α + βtxt + εt,

where βt follows a random walk with the prior noted above. We estimated these two models
on the introductory example data with 10 holdout observations. We plot the results in Figure
Figure A-1, showing, at left, the fit of the two models, and at right, the recovered βt from the
time-varying coefficients model. From the results, we can see that, again, the two models fit very
well, with the true model (the time-varying one) also able to correctly recover the data generating
βt. To evaluate the conflation issue, we examine the RMSE on the holdout observations: for the
nonlinear model, we find a posterior mean RMSE of 0.52, with a 95% credible interval of [0.42
0.69]; for the time-varying model, we find a nearly identical posterior mean RMSE of 0.47, with
a slightly wider 95% credible interval of [0.28 0.73]. Thus, by standard model selection metrics, a
typical analyst would not be able to distinguish these two models. This is as we predicted: the
conflation issue arises because of the model form, not the specific machinery used to estimate the
nonlinear and time-varying effects. As long as the model is sufficiently flexible, conflation will
exist.
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