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1 Introduction

The modeling of dynamic phenomena is central to marketing research. Marketers are in-
terested in understanding the evolution of consumer perceptions, preferences, and their
response sensitivities, as well as the success and failure of different brands over time. Mar-
keting decisions that focus on temporal consequences of marketing actions necessarily rely
on empirical models of such marketing dynamics (Xie et al., 1997; Pauwels and Hanssens,
2007; Naik, 2015). Often, these dynamics are heterogeneous across individual units. We
use the term “individuals” to broadly refer to units over which the heterogeneity is defined,
examples of which include consumers, brands, and products. For example, the pattern of
evolution of preferences could vary across customers because of how they are differentially
affected by economic conditions such as recessions. Similarly, how market perceptions evolve
could vary across brands because of competitive activity. In such situations, the interest is in
both the market-level evolution of preferences, as well as in the individual-level trajectories
that may differ from each other and from how the market is evolving on average.

In this paper, we develop a modeling framework for representing such dynamic het-
erogeneity. Dynamic heterogeneity characterizes situations where individual-level model
parameters evolve over time according to a stochastic process. More specifically, we allow
individual level parameters to evolve flexibly in a fashion that does not force them to exactly
mimic the dynamic evolution of the population mean. We do this by allowing the individual
deviations from the population means to vary over time. At a given point in time, the col-
lection of individual-level parameters forms a distribution of cross-sectional heterogeneity.
The evolution of these individual-level parameters therefore results in a time-varying pop-
ulation distribution, in which the relative positions of individuals are changing over time.
We illustrate the concept of dynamic heterogeneity in the top part of Figure 1.

While marketing researchers have modeled many different forms of heterogeneity (De-
Sarbo et al., 1997), most of the literature focuses on the variation in preferences across
individuals. Variation within individuals over time has been relatively understudied. Mod-
eling this within-individual variation has important managerial implications for understand-
ing changes in markets over time, and for developing dynamic segmentation and targeting
strategies. In addition, just as ignoring cross-sectional heterogeneity can induce estimation
bias, not accounting for parameter evolution can also distort inferences about elasticities or
response sensitivities and misinform managerial actions.

A number of marketing studies have used models that include time varying individual
parameters. Examples include Kim et al. (2005), Liechty et al. (2005), Sriram et al. (2006),
Lachaab et al. (2006), and Guhl et al. (2018). These studies have used a number of different
specifications to capture the evolution of parameters. Kim et al. (2005), for example, use a
vector autoregressive model to represent the evolution of the population mean, while Sriram
et al. (2006) employ a dynamic linear model, and Guhl et al. (2018) rely on penalized
splines. Crucially, while all these papers use a dynamic model to capture how parameters
evolve on average, each imposes a static heterogeneity assumption: conditional on a time-
varying mean model µ(t), the individual-level parameter at time t for individual i is given
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Figure 1: A synthetic example of dynamic heterogeneity, contrasting, in the top row, price sensitiv-
ities of individuals evolving dynamically relative to the population mean (black), and in
the bottom row, the same individuals modeled under the fixed-offsets assumptions. In the
leftmost panel, we see all of the individuals plotted together, while in the remaining pan-
els, we illustrate some interesting dynamic heterogeneity patterns. Comparing the top and
bottom sets, we see that the fixed-offsets assumption ignores the interesting individual-
level dynamics that may be useful for making individual-level targeting decisions, and for
characterizing changes in preferences over time.

by βit = µ(t) + θi, where θi is a time-invariant offset for the individual. Such a fixed-offsets
specification is restrictive: while it allows the population mean to change according to a
model, the individual-level parameters are forced to maintain a fixed distance θi from that
mean at any instant. Even though this results in time-varying individual-level parameters,
their dynamic patterns exactly mimic the overall population dynamics, resulting in static
heterogeneity. This fails to reflect the full richness of individual-level dynamics, as illustrated
through the bottom part of Figure 1.

We propose a new methodological framework for modeling dynamic heterogeneity in
hierarchical models. Drawing on the literature on Bayesian nonparametric models in statis-
tics and machine learning (Rasmussen and Williams, 2005), we develop a novel Gaussian
Process Dynamic Heterogeneity (GPDH) specification that characterizes heterogeneity over
time-varying latent variables using individual-level random functions of time. These func-
tions are estimated using Gaussian processes (GPs) that are centered around a common
mean model. This model captures population-level dynamics, and is itself inferred from the
data. The GPDH specification is a dynamic analogue to static random coefficient specifica-
tions, where the mean model plays the role of the population trend, and the individual-level
functions capture time-varying heterogeneity around this trend. Similar to traditional het-
erogeneity specifications, our proposed dynamic heterogeneity specification allows for: (1)
the sharing of statistical information across individuals by shrinking their trajectories to-
ward a common mean trajectory, (2) the sharing of statistical information within individuals
across time periods (i.e., intra-individual smoothing), (3) flexible inter-temporal evolution,
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and (4) a principled probabilistic mechanism for projecting the evolution of individual and
mean trajectories into other time periods. An important feature of our GPDH specification
is that it can be used with any mean model, allowing the researcher to incorporate prior
expectations, theory, or even specific drivers of dynamics. Our use of GPs to nonparametri-
cally represent individual-level latent functions that are shrunk towards a common dynamic
population model is novel to the econometric, marketing, and machine learning literatures.

Capturing dynamic heterogeneity yields many benefits. It can generate interesting
insights about the different patterns of individual-level evolution. For example, as we show
in our two applications, identifying individuals whose parameters shifted from one extreme
of the population to the other, or who moved from being in the extremes of the distribution
to the center, or vice versa, can enhance managerial and substantive understanding, and can
be leveraged by managers for targeted marketing. However, the importance of capturing
dynamic heterogeneity goes beyond such individual-level insights. Statistically, if dynamic
heterogeneity is present but static heterogeneity is assumed, as is commonly done, we
could obtain misleading estimates about both the population-level mean and the extent of
heterogeneity, both of which can negatively impact targeting decisions. This can be true
even if the correct functional form for the population mean model is used, as we illustrate
through simulations.

In this paper, we present two applications of GP dynamic heterogeneity: the first
and most extensive is in a choice modeling context, similar to our motivating examples,
where GPDH is used to represent time-varying consumer preferences for consumer pack-
aged goods, over a span of time that includes the Great Recession. Using both simulated
and real purchasing data, we show that GPDH yields more accurate and statistically effi-
cient population and individual-level estimates of preference evolution. On data from six
CPG categories, GPDH outperforms static heterogeneity specifications in both fit and fore-
casting tasks, across a wide array of performance metrics. At the same time, GPDH also
uncovers individual-level patterns that can be used to characterize and target customers,
and to study individual-level responses to economic shocks. More specifically, we find both
simulated and empirical evidence of an attenuation bias in estimating population-level pa-
rameters when assuming static instead of dynamic heterogeneity around a dynamic mean
model. Moreover, we find that, across all categories, estimated individual-level elasticities
are notably higher when estimated with dynamic versus static heterogeneity. These biases,
and the ability to predict individual-level dynamics, can directly impact category manager
decision-making. Finally, the individual-level dynamics uncover cross-category differences
in response to the recession: while there are obvious aggregate-level changes in price sen-
sitivity in many categories, GPDH also uncovers category-level differences in the degree of
individual-level response to the Great Recession.

Apart from the modeling of preferences, our specification can be adapted to a number
of different settings. In our second application, we focus on an entirely different substantive
context: the modeling of product reviews. We develop a novel, GPDH-based dynamic topic
model to summarize relevant topics that are discussed in customer reviews for different
brands of tablet computers. Particularly, our GPDH topic model captures how the review
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contents of individual products evolve relative to aggregate patterns. Empirically, we show
how these product-level topic trajectories give insights about the dynamics of market struc-
ture in the tablet computer market. Such a granular set of results is not obtainable via
aggregate models of market dynamics.

The rest of the paper is structured as follows: We first give an overview of the needed
methodological background, before introducing our GPDH framework. We then discuss
our two applications: choice modeling and topic modeling. We conclude by highlighting
other GPDH applications, describing limitations of the current paper, and suggesting future
research directions.

2 Methodological Background

2.1 Literature

Gaussian processes (GPs) are Bayesian nonparametric models that are popular in statistics
and computer science (O’Hagan and Kingman, 1978; Williams and Barber, 1998; Rasmussen
and Williams, 2005) for flexibly modeling temporal and spatial phenomena. Marketing
researchers have used Bayesian nonparametrics to represent the heterogeneity in static
model parameters via Dirichlet process priors (Ansari and Mela, 2003; Kim et al., 2004;
Braun et al., 2006; Ansari and Iyengar, 2006; Braun and Bonfrer, 2011; Li and Ansari, 2014).
While Dirichlet processes are most commonly used to model uncertainty over probability
distributions, Gaussian processes are most commonly used to model uncertainty over spaces
of continuous functions.1

GPs have been used in marketing applications by Dew and Ansari (2018) to decompose
variation in purchase rates in a dynamic customer base analysis setting. In their application,
GPs were used to represent a mean model of spending rates, but individual-level variation
around that mean model was still assumed to be static. Gaussian processes are also related
to kriging methods used in Bronnenberg and Sismeiro (2002) for predicting demand across
markets. In the context of choice models, Girolami and Rogers (2006) use GPs to model
the utility functions of multinomial probit models in a non-dynamic and non-heterogeneous
context. Finally, our work is also closely related to the marketing literature that models
individual-level dynamics (Liechty et al., 2005; Sriram et al., 2006; Lachaab et al., 2006;
Ansari and Iyengar, 2006; Khan et al., 2009; Guhl et al., 2018) via fixed-offsets specifications.
Our purpose in this paper is to show how GPDH offers a more flexible and precise alternative
than those restricted forms of heterogeneity. We now briefly describe GPs.2

1In some applications, these distinctions are fuzzy: for instance, GPs can also be used to model the density
function of a distribution, as in Adams et al. (2009), while DPs can also be used to specify mixing
distributions over functions, leading to flexible function approximations, as in Kottas (2006).

2We refer the reader to Rasmussen and Williams (2005) for a comprehensive treatment, and to Dew and
Ansari (2018) for an extensive overview in a marketing context.
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2.2 Gaussian Processes

A Gaussian process is a stochastic process f() defined over some input space, which in the
present work, we take to be time, t ∈ R+. GPs are defined by a mean function, m(t), and
a covariance function or kernel, k(t, t′) over input pairs (t, t′) such that m(t) = E[f(t)],
and k(t, t′) = Cov(f(t), f(t′)). If f ∼ GP(m(t), k(t, t′)), then for any finite set of inputs,
t = (t1, . . . , tT ), the collection of corresponding function values (outputs) over these inputs
has a joint multivariate Gaussian distribution, i.e.,

f(t) = (f(t1), . . . , f(tT )) ∼ N(m(t),K(t)) , (1)

where m(t) = (m(t1), . . . ,m(tT )) is the mean vector of the multivariate normal and K is
the T × T covariance matrix with entries given by Kij = k(ti, tj). In this way, GPs specify
a Gaussian distribution over outputs for any given set of inputs, and therefore provide a
natural mechanism for specifying uncertainty over a function space.

The mean and the kernel determine the nature of the functions that a GP prior gener-
ates. Informally, the mean function encodes the expected location of the functions, whereas
the kernel encodes function properties, such as smoothness, amplitude, and differentiability.
Much of the GP literature assumes a constant mean function to reflect a lack of prior knowl-
edge about the shapes of the unknown functions, and the kernel serves as the main source
of model specification. Many different kernels have been proposed in the GP literature. In
theory, the kernel can be any function k : R2 → R such that K(t) remains positive semidef-
inite. Kernels are specified via hyperparameters that control the traits of the functions
that a GP prior generates. Estimation yields hyperparameters as well as function values
corresponding to particular inputs. These are used to predict the function values for a new
set of inputs, based on the conditional distribution of the multivariate normal. In practice,
stationary kernels, such as the Matérn kernel that we use in this paper, are most commonly
used. We describe this kernel’s properties in more detail in the next section.

3 Gaussian Process Dynamic Heterogeneity

Given the above background we now introduce our Gaussian Process Dynamic Heterogeneity
(GPDH) specification in the context of a general hierarchical non-linear modeling frame-
work specified in multiple stages. The first stage models the individual-level data in terms of
individual-specific latent functions of time, the second stage specifies how these latent func-
tions vary across individuals according to a GP that is characterized by a mean-model and
a covariance kernel, and the third stage specifies priors over any invariant parameters in the
individual-level model and the hyperparameters for the mean model and the heterogeneity
specification.
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3.1 Stage 1: Individual-Level Model

Suppose that the data yit for individual i, at time t, observation m, comes from

yitm ∼ π(βit,θ),

where the individual-level parameters βit = (βi1t, βi2t, . . . , βiP t) are time-varying, and the
parameters in θ are invariant, both across individuals and over time. The exact functional
form and the distributional assumptions used in specifying π(·) can differ across applications.
For example, π(·) is a multinomial logit in our Application I, in which case βit contains
brand intercepts and response coefficients. In Application II, π(·) represents a topic model,
where βit captures online chatter about a particular topic for a brand i at time t.

3.2 Stage 2: Heterogeneity Specification

The key conceptual innovation of our framework is considering the time-varying individual-
level parameters, βipt, as functions of time, βip(t). We can then use GPs to specify a
distribution over the space of individual-level functions, such that for each dynamic param-
eter p = 1, . . . , P ,

βip(t) ∼ GP(µp(t;αp), k(t, t′;φp)). (2)

The mean function of this GP is a dynamic population model µp(t;αp) that specifies how the
individual-level functions evolve on average, conditional on parameters αp. The individual-
level functions are centered around this population model, and are shrunk towards it in a
Bayesian fashion. The properties of the individual-level departures from this mean model
determine the properties of the dynamic heterogeneity, and are governed by the hyperparam-
eters of the kernel, φp. These parameters control both the magnitude of inter-individual het-
erogeneity (i.e., the degree of inter-individual shrinkage), and the degree of intra-individual
temporal pooling (or smoothing). We now describe these GP components in more detail.

Mean Model The focus of this work is on capturing dynamic heterogeneity around a focal
model, and we thus assume that the researcher has a specific mean model in mind. The
marketing literature on dynamic modeling includes several examples, such as state space
models (e.g., dynamic linear models that are typically estimated via the Kalman filter in
simpler settings), traditional time series models such as ARMA (Box et al., 2015), and para-
metric models capturing a specific dynamic phenomenon, as in latent force models within
the machine learning literature (Alvarez et al., 2013) or models of advertising dynamics in
marketing (Naik et al., 1998). The mean model could also be another GP. We use different
examples in our applications. Which specification is appropriate depends on the modeling
context. Again, our goal here is not to compare mean models, but to illustrate their use in
understanding dynamic heterogeneity. Conditional on an appropriate (or sufficiently flex-
ible) mean model, we have found that the bigger gain in performance comes from using
dynamic versus static heterogeneity, rather than the choice of mean model.
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Kernel Choice The kernel captures the properties of the dynamic heterogeneity. In this
work, we use the rich class of Matérn kernels, which has a general form given by:

k(t, t′; η, κ, ν) = η2
21−ν

Γ(ν)

(
κ |t− t′|

)ν
Kν

(
κ |t− t′|

)
, (3)

where η > 0, κ > 0, and ν > 0 are the kernel hyperparameters that govern the character-
istics of the function draws, Γ(·) is the gamma function, and Kν(·) is the modified Bessel
function of the second kind. While the functional form of the kernel is unintuitive, its hy-
perparameters have straightforward meanings: the amplitude η controls the variability of
the individual function draws around the mean function, while κ, the inverse length-scale,
determines the smoothness of those function draws.3 The degree ν also determines the
smoothness of the functions by determining their level of differentiability, as draws from a
GP with a Matérn kernel are dν − 1e times differentiable, where d·e is the ceiling function.
Thus, the amplitude η determines the magnitude of dynamic heterogeneity, as it reflects
how far the individual-level curves can be from the mean curve, where as κ captures the
degree of intra-individual pooling across time.

Prior work has shown that the Matérn kernel hyperparameters cannot all be consis-
tently estimated, and in particular, ν cannot be separately identified from κ (Zhang, 2004;
Kaufman and Shaby, 2013). Hence, ν is typically fixed to a value that reflects the supposed
smoothness of the underlying process. Moreover, when the degree is fixed to a half integer
(ν = n+1/2, n ∈ N), the complicated functional form in Equation 3 simplifies to a product
of a dν − 1e degree polynomial and an exponential. For example, when ν = 3/2, the kernel
simplifies to:

k(t, t′; η, κ) = η2
(
1 + κ |t− t′|

)
exp
(
−κ |t− t′|

)
. (4)

Fixing ν to a half integer thus makes kernel estimation more tractable. This is especially
important when inference methods rely on gradients that involve the kernel function, as
derivatives of the Bessel function can be computationally intensive. Furthermore, when
the degree ν → ∞, the kernel converges to the squared exponential kernel that is used in
Dew and Ansari (2018). Consistent with the previous literature (Rasmussen and Williams,
2005), we limit ourselves to Matérn kernel with ν = 1/2, 3/2, 5/2, and ∞ (i.e., the squared
exponential kernel).4

We use the Matérn kernel class in this work for several reasons. First, it is easier
to control the smoothness of the function draws from this kernel such that momentary
temporal fluctuations can be captured while still representing the underlying smoothness of

3A more typical form of the Matérn is:

k(t, t′; η, ρ = 1/κ, ν) = η2 21−νΓ(ν)−1
[√

8ν |t− t′|/ρ
]ν
Kν

(√
8ν |t− t′|/ρ

)
.

We use an inverse length-scale, slightly rescaled parametrization, such that our parameter κ =
√

8ν/ρ
from the more typical parametrization. This follows the discussion of Fuglstad et al. (2018). Using an
inverse length-scale allows us to nest the fixed offsets model as a special case, and is amenable to our
choice of prior for the hyperparameters. The rescaling also helps with the interpretability of the prior.

4For more detailed discussion of the degree parameter, and the restriction to these four values, we refer
readers to Rasmussen and Williams (2005), pp. 84-85.
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Figure 2: Draws from a GPDH model with a fixed mean function. Each panel uses a different value
of κ with a Matérn-3/2 kernel. The mean function is denoted by the bold solid line. We
can see that, as κ→ 0, the curves more closely mirror the mean function.

the process. This is especially suitable for the preference data in Application 1. Second, this
class nests the squared exponential kernel — the typical workhorse of the GP literature and
also used by Dew and Ansari (2018) — as a limiting case. Third, as we describe in the next
section, the GPDH specification with the Matérn kernel nests more common heterogeneity
specifications as special cases. Finally, Matérn kernels allow the use of complexity penalizing
priors which facilitates fully Bayesian inference in a principled manner.

Link with Static Heterogeneity Specifications With this kernel specification, GPDH
nests the static (fixed offsets) heterogeneity specification as a special case. Mathematically,
the fixed offsets model assumes βit = µt+ θi, θi ∼ N (0, σ2). For a fixed set of time periods,
t = 1, . . . , T , this is equivalent to assuming: (βi1, . . . , βiT ) ∼ N ((µ1, . . . , µT ), σ211′), where
1 is a T vector of ones. That is, assuming static heterogeneity around a dynamic mean
model is equivalent to assuming that the full vector of parameters, (βi1, . . . , βiT ), has a
multivariate normal distribution with a rank one covariance matrix, where each entry is
given by σ2. It can be shown that as κ → 0, the Matérn-3/2 kernel, given in Equation 4
degenerates to k(t, t′; η) = η2, yielding a rank one covariance matrix, which is equivalent
to the fixed offsets case. In other words, as κ → 0, GPDH converges to fixed offsets het-
erogeneity. This relationship holds for any member of the Matérn family of kernels. We
demonstrate this convergence in Figure 2. This relationship also explains why we use the
inverse length-scale parametrization, as this parametrization allows us to place a sizable
prior mass on models converging to the fixed-offsets model, and thus allows us to add a
prior tendency toward that restricted model. Therefore, if the posterior places a sizable
mass away from zero, we can be confident that the data rejects the fixed offsets restriction.
Moreover, we can use the magnitude of κ as a proxy for the extent to which individuals
typically vary over time, relative to a static heterogeneity assumption.
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3.3 Stage 3: Hyperpriors

We employ a fully Bayesian strategy for estimating the GPDH hyperparameters. In partic-
ular, we leverage the Penalized Complexity (PC) prior for Matérn Gaussian random fields
introduced by Fuglstad et al. (2018). The PC prior is a weakly informative prior, based on
the idea of penalizing the complexity induced by the kernel hyperparameters in the resultant
Gaussian process. Complexity in classical Gaussian process models refers to functions with
high amplitude (large η) and small length-scale (small ρ, equivalent to large inverse length-
scale, κ). In GPDH, these hyperparameters have distinct meanings: the individual-level
amplitude governs the degree of inter-individual shrinkage, while the inverse length-scale
captures the degree of individual-level dynamics. Thus, by penalizing high amplitudes and
high inverse length-scales, the PC prior encourages shrinkage across individuals, and places
significant prior mass on the nested fixed offsets model. The density of the PC prior is:

p(η, κ) =
1

2
λ1λ2κ

−1/2 exp(−λ1
√
κ− λ2η); λ1 = − logαρ

√
ρ0√
8ν
, λ2 =

logαη
η0

. (5)

Despite the unintuitive functional form, another advantage of this prior is that the parame-
ters η0, ρ0, αη, and αρ can be set in an intuitive way to take into account expectations on the
magnitude of heterogeneity and the degree of intertemporal information sharing. Specifi-
cally, as derived in Fuglstad et al. (2018), this prior yields the following tail probabilities
for η and ρ =

√
8ν/κ:

P (η > η0) = αη, P (ρ < ρ0) = αρ. (6)

In our work, we fix η0 = 5, αη = .01, reflecting a diffuse prior assumption that the magnitude
of heterogeneity will not be too large, and ρ0 = 1, αρ = .001, reflecting a prior assumption
that the length-scale will not fall below 1.5

3.4 Estimation

Given the generality of our framework, the details of the estimation procedure for a hierar-
chical model that uses GP dynamic heterogeneity depend upon the specific individual-level
model used in stage 1. We discuss our application specific strategies in the following sections.
As a general point, a number of different inferential strategies have been proposed in the
GP literature. These include the use of Laplace approximations, variational Bayesian, and
expectation propagation methods (Rasmussen and Williams, 2005; Girolami and Rogers,
2006). Often, approximate inference techniques are used with GPs to overcome the com-
putational complexity in estimating the function values and the hyperparameters of a GP,

5These values are appropriate for the choice setting considered here, where the utility is defined on a
logit scale, the inputs (e.g., prices) are standardized, and time intervals are discrete months (e.g. t =
1, 2, 3, ...). If a larger amount of heterogeneity is expected, or the inputs are not standardized, then the
tail probability for the amount of heterogeneity, η, can be adjusted by choosing a higher value of η0, or a
larger tail probability threshold αη. The assumed values ρ0 = 1, αρ = 0.001 place prior mass away from
length-scales, ρ, that are not properly identified: since the data is spaced evenly, very small length-scales
are not identified from one another. If the data are not integer-spaced, then the value of ρ0 can be
adjusted to reflect the smallest gap between inputs that is expected.
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when T , the number of time periods, is large. In our applications, as the number of time
periods is not very large, we use MCMC methods for exact inference. Filippone et al. (2013)
and Filippone and Girolami (2014) perform a comparative evaluation of different MCMC
estimation strategies for GP models. In particular, we use the No-U-Turn sampler (NUTS)
variant of Hamiltonian Monte Carlo (Hoffman and Gelman, 2014). We have found in our
GPDH applications that it is important to jointly sample both the function values and
the hyperparameters in one go, as the strong dependency between these sets of parameters
makes HMC-within-Gibbs strategies very slow to converge.

3.5 Distinctions from Previous Work

Finally, we reiterate two important features of our approach that makes it distinct from
previous work. The first is that in our specification, the GPs are used to estimate individual-
level functions, which is distinct from using GPs to estimate mean dynamics, as in Dew and
Ansari (2018). Secondly, while recent work by Yang et al. (2016) appears similar to ours in
the use of collections of Gaussian processes, they model observed variables using GPs. In
contrast, we model latent individual-level model parameters via Gaussian processes. Since
the quantities of interest in our work are latent, we must impose more restrictions than
Yang et al. (2016) on the nature of the covariance. Specifically, we assume a parametric
form for the covariance kernel, which allows us to estimate the model without needing
to directly observe the quantity of interest. This assumption also lets us mathematically
link the GPDH method to existing heterogeneity specifications as special subcases of our
specification.

4 Application I: Dynamic Preference Heterogeneity

We now apply our modeling framework to study the evolution of individual-level preferences
over time in a multinomial logit choice model. We first estimate the model on synthetic
data to illustrate the relative merits of GPDH and the potential pitfalls of not capturing
dynamic heterogeneity. We then shift our focus to real data of grocery store purchasing
during the Great Recession.

4.1 GPDH Multinomial Logit Model

We consider discrete choice data yit, from individuals, i = 1, . . . , N , who make choices
over time t = 1, . . . , T from a choice set of j = 1, . . . , J alternatives. The choices can be
explained in terms of a set of observed covariates xipjt, indexed by p = 1, . . . , P , including
brand intercepts. We assume a linear utility specification, with independent, standard
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extreme value (EV) errors, and with parameters modeled by GPDH,

uijt =

P∑
p=1

βip(t)xipjt + εijt, εijt ∼ EV(0, 1), (7)

such that consumers choose the alternative with the highest utility. For identification, we
normalize the intercept of the brand with the highest market share to zero. As we order
brands by market share, such normalization effectively forces Brand 1s intercept to zero.
This yields the standard softmax specification for the logit choice probabilites in terms of
the individual-level time-varying intercepts and sensitivities in βip(t).

6 We then model these
individual-level functions using the GPDH specificaton with a Matérn kernel:

βip(t) ∼ GP(µp(t), kp(t, t
′)), where kp(t, t

′) = kMatern(t, t′; ηp, κp, νp). (8)

For both the simulations and the real data, we fix νp = 3/2. We choose this value based
on cross-validation using the real data. However, we also found that, in general, predictive
performance was only marginally affected by the degree parameter. We include a brief
discussion of kernel degree selection in Web Appendix A.

Mean Models Our emphasis is in modeling the evolution of heterogeneity around a given
mean model. As such, and to illustrate the flexibility of GPDH, we test four different mean
models in this application, corresponding to four common specifications in the literature:

1. Random walk state space (RW): The random walk is the simplest linear state space
model that is used in the Kalman filtering literature. Our implementation is given by:

µp(t) = µp(t− 1) + ζpt, ζpt ∼ N (0, α2
p). (9)

2. Gaussian process (GP): As in Dew and Ansari (2018), we can assume a GP as the
population model:

µp(t) ∼ GP(cp, k0p(t, t
′; η0p, κ0p, ν0p)). (10)

We assume a constant mean cp and a Matérn kernel, with the degree parameter ν0p
of this upper level kernel to be the same as in the GPDH kernel.7 This is the mean
model we assume in the simulations.

3. Autoregressive moving average (ARMA) time series: Time series models are especially
common in econometric applications and can easily be incorporated into our GPDH
framework. We test an ARMA(1) mean model specification, given by:

µp(t) = µpt = α0p + α1p µpt−1 + α2p ζpt−1 + ζpt, ζpt ∼ N (0, τ2p ). (11)

6Correlated Gaussian errors could also be used here, leading to a variant of the multinomial probit model.
We favor logit choice probabilities for computational convenience.

7This is merely a simplifying assumption: there is no theory-based reason to fix both to have the same
smoothness.
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4. Parametric: A theory-driven parametric model can also serve as the mean model.
In this case, one interesting question is the degree to which the Great Recession is
associated with changes in consumers’ preference parameters. Thus, to illustrate how
a parametric model could be used in conjunction with GPDH, we use a mean function
given by the PDF of a generalized inverse Gamma distribution:

µp(t) = α0p + α1p

[
(α2p)

α3pt−α3p−1 exp (−α2p/t) /Γ(α3p)
]
, (12)

with α2, α3 > 0. This parametric mean function allows for a unimodal pattern,
with different pre- and post-peak function asymptotes, thus allowing us to isolate the
impact of the recession.

For each of these, we subsequently denote the collection of parameters of the mean model
generically as α. Note that α varies across different mean models.

Extensions There are many possible extensions and alternatives to the utility and mean
model specifications that can incorporate other potentially desirable features alongside dy-
namic heterogeneity, depending on the available data and choice context. For instance,
if the researcher has access to a set of potential drivers of shifts in preferences, such as
individual-level events like job loss or changes in income, or market-level events like an
indicator for the Great Recession, these can be incorporated directly in the mean model.
Specifically, denoting these drivers generically as zit, an additive linear specification could
be used, such that:

βip(t) ∼ GP(γ′pzit + µp(t), k(t, t′;φp)), (13)

where γp captures the expected effect of these drivers on preferences. In our choice model-
ing application, we prefer to estimate the effect of the Great Recession nonparametrically,
through a flexible mean function, and we do not have other covariates available to include.
However, we include a simulated example of using such parametric drivers in Web Appendix
J.

A second important consideration in many choice modeling contexts is endogeneity,
particularly price endogeneity. While in this work we focus just on the modeling of het-
erogeneity, we note the GPDH specification can be used in conjunction with methods for
controlling for endogeneity. For instance, in the case of price endogeneity, the two stage
control function method of Petrin and Train (2010), or the semiparametric approach of Li
and Ansari (2014), could be seamlessly incorporated in the utility specification in Equation
7, together with an additional equation for the price setting process.

Estimation We estimate all variants of our GPDH logit model via HMC, using the NUTS
algorithm. Specifically, we jointly sample all model parameters, including the individual-
level functions, the shared mean function, and the hyperparameters. For the parameters of
the mean model, we use weakly informative priors. The joint density for the full model is
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given by:

p(y, β, µ, α, φ|X) =

M∏
m=1

p(ym|Xm, {βimp(tm)}Pp=1)×

I∏
i=1

P∏
p=1

p(βip(t)|µp(t),φp) p(µp(t)|αp) p(φp) p(αp), (14)

where m = 1, . . . ,M indexes observations, ym is the choice, tm is the time period, and
im is the individual associated with the mth observation. Xm contains the price and
feature/display variables across all brands. We standardize the variables over the calibration
data and report standardized results below. We run the sampler for 400 iterations (200
warmup), and measure convergence through the R̂ statistic (Gelman et al., 1992). In all
cases, we achieve R̂ ≈ 1. We include more estimation details in Web Appendix B, and a
discussion of computation time in Web Appendix G. The Stan code to implement the model
is contained in Web Appendix I.

4.2 Simulations

In this section, we briefly describe a simulation exercise that illustrates the benefits of
modeling dynamic heterogeneity. In Web Appendix C, we include additional simulations,
to help understand the shrinkage properties, and computational complexity of GPDH.

To understand the benefits of capturing dynamic heterogeneity, and the potential lim-
itations of competing approaches, we simulate multiple sets of choice data from the GPDH
multinomial logit with a GP mean model. We then estimate the following three models
on each of these data sets: (1) the true model (GPDH logit with GP mean); (2) a fixed
offsets (FO) model that uses the GP mean model, but with static heterogeneity; and (3)
an independent periods (IP) mixed logit specification that estimates a mixed logit model in
each period, with only the variance of the random coefficients shared across periods, which
therefore does not directly allow for within individual shrinkage across time. By simulating
data with GPDH, we ensure the presence of dynamic heterogeneity. Moreover, by assuming
a GP mean as the true data generating process, we nest both the FO and IP8 specifications
as limiting cases.

There are two key results from these choice model simulations. First, by sharing infor-
mation both within and across individuals, GPDH yields highly efficient estimates, relative
to models that assume independence across time periods. By efficient, we mean small cred-
ible intervals, while still recovering the true curve. We illustrate this in Figure 3, which
shows examples of true individual-level curves and their recovery by the three specifica-
tions. GPDH, as expected, correctly recovers the true curves, and does so with a reasonable

8The IP specification is equivalent to the case where the length-scales of the GP mean model and the
GPDH heterogeneity specification go to zero, implying no cross-period correlations for either the mean
or the individual-level trajectories.
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Figure 3: Three illustrative curves: In the columns, we plot three individuals’ true price parame-
ters (black/dot-dash), simulated from the GPDH model, relative to the (true) simulated
population mean trajectory (grey/solid). In the rows, we then show the estimated curves
(color/dashed) for those same three individuals for each of the three specifications. In
the first row, we see the GPDH recovery is accurate and precise, leveraging the inter and
intra-individual pooling of information to yield reasonable error bars. In the second row,
using an independent periods assumption (IP), we see the estimated curves are jagged,
and the error bars large, reflecting no smoothing or inter-temporal information sharing.
In the last row, using a fixed offsets (FO) assumption, we see the curves have narrow error
bars, but are wrong, each one reflecting the shape of the (estimated) population mean.

amount of precision, as shown by the 95% credible intervals, relative to the curves recovered
by IP. Under IP, there is no inter-temporal sharing of information, leading to estimates that
are quite jagged, and with much wider credible intervals. Finally, under FO, the recovered
curves are simply wrong: since the FO assumes individuals are always at a fixed distance
from the mean trajectory, the interesting patterns of individual-level variation are missed.

The second key result is that, if dynamic heterogeneity exists in the data, but static
heterogeneity is assumed as in the FO model, the population-level estimates under FO are
biased toward zero. This is the case even when the true data generating mean model is
used in the FO model, as it is in our simulations. In Figure 4a, we illustrate this bias for a
single simulated dataset, plotting the recovered marginal distribution of the point estimates
of the coefficients at different points in time. We can see that the posterior median as
recovered by FO is always biased toward zero, and that the estimated distribution of effects
has significantly less variation than the truth. In Figure 4b, we show the same result, but
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Figure 4: (a) Boxplots showing the distribution of the individual-level effects in specific periods,
evaluated at four evenly spaced time periods, (b) MAPE of the recovery of the population
mean dynamics across the two models for the “price” coefficient. The truncation at MAPE
of 1 omits 16 observations out of 172 simulations from the plot.

from 172 repeated simulations, where we varied the η parameter of the true GPDH data
generating process. For each simulated data set, we again estimated both GPDH and FO
heterogeneity specifications around the same (true) mean model. Then, we computed the
mean absolute percentage error in recovering the true population mean. We see that the
error is higher in the FO model and increases with η, which represents the magnitude of
dynamic heterogeneity in the data generating process. Taken together, these simulations
suggest that the popular approach of assuming static heterogeneity around dynamic mean
models may lead to biased estimates of the population mean, thereby distorting managerial
decisions.

4.3 Consumer Packaged Goods in the Great Recession

We now turn our attention to modeling real choices. Specifically, we model brand choice in
the IRI consumer packaged good (CPG) panel data, from January 1st, 2006 to December
31st, 2011 (Bronnenberg et al., 2008). We chose this span because it includes the Great
Recession, which according to the National Bureau of Economic Research, began in De-
cember 2007, and ended in June 2009. Thus, analyzing this time period has the potential
to yield purchasing dynamics of interest to both economists and managers. Specifically, we
study the evolution of consumers’ individual-level brand preferences, price sensitivities, and
feature/display sensitivities across six different product categories: peanut butter, coffee,
potato chips, laundry detergent, tissues, and toilet paper. We model the time variation at
the monthly level. We retain all panelists who spent at least five times during the data
and save the last four months of data for holdout validation. Summary statistics for the
categories are displayed in Table 1.

Case Study: Preferences for Tissues To begin, we will focus our analysis on just one
category and one model: the tissues category, and the GPDH logit model with an ARMA
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Category Brands People Purchases
(Total)

Avg. Months
(Per Person)

Avg. Purchases
(Per Person)

Price Mean
(SD)

% Ft/Dsp

Chips 4 1552 36152 28.29 45.45 4.12 (0.79) 96
Coffee 5 912 14298 21.73 32.31 5.38 (2.19) 91
Detergent 6 1117 16784 19.96 24.70 1.20 (0.78) 90
Peanut Butter 5 1085 16212 19.41 25.37 1.95 (0.46) 86
Tissues 4 979 15005 22.26 34.02 1.59 (2.79) 69
Toilet Paper 6 1512 26958 24.03 34.23 .61 (0.17) 83

Table 1: Summary statistics for the consumer packaged goods data, by category. % Ft/Dsp is the
percentage of observations in which there was at least one brand featured or displayed).
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Figure 5: At top, we plot posterior mean estimates of the population means, µp(t), in the tissues
category. The last four periods (months) are forecasts. At the bottom, we plot the
difference between the individual-level curves and the mean model for a few randomly
selected individuals.

mean model. We will use this specific example to illustrate the output and insights about
dynamic heterogeneity that can be generated from a GPDH specification. The tissue cate-
gory, in particular, generates interesting patterns of dynamic heterogeneity, and we use the
ARMA mean model here as it tended to perform the best among all mean models studied.
We defer a discussion of the results across all categories to the next section.

We start with the posterior estimates for the mean model µp(t). The top portion of
Figure 5 shows these estimates for tissues. The five panels show obvious monthly dynamics.
On average, the intercepts for brands 2 and 3 tended to move in opposite directions to each
other, while the intercept for Brand 4 appears to track that of Brand 2 to some degree.
These intercept dynamics are relative to the normalized intercept of Brand 1. Both price
sensitivity and feature/display parameters also exhibit some monthly dips and spikes.

While the mean patterns are certainly interesting, the primary focus of this paper is on
capturing how individuals changed relative to those mean trends. In the bottom portion of
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Figure 5, we show the difference between the individual-level curves and the estimated mean
model, Diffip(t) = β̂ip(t) − µp(t), for a few individuals who spent consistently throughout
the data.9 From this, we can see that, while some individuals followed the mean trajectory,
resulting in flat differenced curves, others moved significantly relative to the mean function.
Capturing this movement is the goal of GPDH.

The nature of the individual-level deviations is determined by the estimated hyperpa-
rameters, ηp and κp. As the amplitude ηp grows, the individual-level curves are allowed to
spread further from the mean. As κp grows, the individual-level curves become less smooth.
For the tissues category, the estimated posterior mean GPDH hyperparameters imply that
the feature/display coefficient has a very low degree of heterogeneity, reflected in its low
η = .298.10 The feature/display coefficient also bears the closest resemblance to the fixed
offsets assumption, with κ = .01 ≈ 0. The price coefficient has a relatively large degree
of heterogeneity, with η = 6.943, and the deviations from the mean are relatively smooth,
with κ = .021. Brand 4 exhibits the least smooth variation, with the highest κ = .068.
These effects are also evident from Figure 5.11

We now zero in on a few interesting cases of individual-level evolution that highlight
the nuanced insights made possible by considering dynamic heterogeneity. We do this in
Figure 6, by focusing on only a single parameter, the Brand 2 intercept, which captures
the intrinsic preferences for that brand, relative to the baseline, Brand 1. We showcase
individuals who spent consistently, and whose curves exhibit three interesting patterns:12

• Converging: In the leftmost panel, we plot a set of individual curves that converge
toward the population mean. These customers started in one extreme of the distri-
bution for the Brand 2 intercept, but by the end of the observation window, were in
the middle of the distribution. Under a fixed offsets model, these individuals would
be estimated as being moderately above or below the population mean, which is true
only in the middle of the observation window, and does not reflect current or expected
future behavior.

• Crossover: In the middle panel, we plot a set of customer curves that cross over
the population mean. That is, these individuals started out liking/disliking Brand
2 (relative to others), and moved to disliking/liking (respectively) by the end of the
observation. Under a fixed offsets model, these individuals would be classified as falling

9We define consistent by dividing the data timespan into four parts: months 1-18, 19-36, 37-54, 55-72. A
consistent purchaser is one who spent during each one of these time periods. Selecting individuals in this
way is important because the GPDH model exhibits mean reversion in periods where a customer does
not make purchases. By selecting individuals who spent throughout the span of our data, we ensure that
the patterns in this figure reflect true dynamics and not mean reversion. For the tissues category, there
were 212 consistent spenders.

10The η parameter depends on the scale of the variables: since price and feature/display are standardized
(mean zero, variance one), η can be compared across them, but cannot necessarily be compared to the
intercept parameters.

11To contextualize these values of κ, and build intuition as to how different values of κ shape individual-level
curves, we refer readers back to Figure 2.

12See footnote 9 for our definition of a consistent purchaser, and the rationale for restricting the sample in
this way.
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Figure 6: At top, we plot a sample of interesting individual-level curves in the tissues category, over-
laid on the estimated mean model (in bold). Specifically, we isolate individuals whose
curves converge toward the population mean, cross over the population mean, and di-
verge from the population mean. At bottom, we plot the difference between those same
individual-level curves and the mean model, more clearly illustrating these changes.
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near the population mean; in fact, they are perhaps the least average consumers, from
a marketing research perspective, as they reflect a strong change in preferences.

• Diverging: Similar to the converging case, in the rightmost panel, we plot individual
curves that diverge away from the population mean. These customers started out
relatively average in their tastes for Brand 2, but moved to the extremes of the dis-
tribution over time. Under a fixed offsets model, they would be estimated as being
moderately above or below the population mean, which is only true in the middle of
the observation window, and again does not reflect current or expected future behav-
ior.

Model Fit We now focus on the results across all six categories, so as to make some
generalizations. The key result is that dynamic heterogeneity is pervasive across the six
categories. On comparing the fixed offset model to our dynamic heterogeneity model,
we find that GPDH fits the data better across all metrics, both in the calibration data,
and in forecasting tasks, including on metrics that penalize model complexity. We include
detailed definitions of these statistics, together with the full set of fit statistics and Bayesian
measures like WAIC, in Web Appendix D. In Figure 7, we plot a subset of these measures,
including in-sample and forecast sensitivity, specificity, and F1 (the harmonic mean of
precision and recall), expressed as the lift from using GPDH versus static heterogeneity,
across all mean models and categories. The superior fit of GPDH across nearly all of these
metrics, both in Figure 7 (lift > 0) and in the appendix, strongly supports our claim that
dynamic heterogeneity is present, even in relatively simple panel datasets like grocery store
purchases.

Parameter Estimates and Attenuation Bias The hyperparameters of GPDH capture both
the magnitude of dynamic heterogeneity for a given parameter, and how much within-
individual variation there is, over time. They also allow us to assess the degree by which
individual-level trajectories differ from the fixed offsets restriction. Across categories, we
find that the magnitude of dynamic heterogeneity, η, is typically large, especially for brand
intercepts and price sensitivity: for intercept parameters, the mean η = 2 (SD = .64), while
for price, the mean η = 2.23 (SD = 2.38). For feature/display, the mean η = .29 (SD =
.11).13 Moreover, GPDH soundly rejects the fixed offsets model: the distribution across all
categories and coefficients of κ, the inverse length-scale, is centered away from zero, with a
mean κ = .03 (SD = .02), and with some values as high as κ = .09.14

We found in our simulations that not accounting for dynamic heterogeneity can lead to
attenuation bias in both the mean model estimates, and in the overall extent of heterogene-
ity. We also find empirical evidence of the bias in our real data. Specifically, we find that
the empirical standard deviation of individual-level parameters within a given time period

13It is difficult to directly compare η across coefficients, as it is not invariant to the scaling of the predictors:
brand intercepts are binary whereas the other features are standardized (mean zero, variance one).

14We report all posterior mean estimates for the hyperparameters in Web Appendix H.
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Figure 7: We compare the lift from using GPDH over static heterogeneity (i.e., fixed offsets) in in-
sample and forecast fit statistics in all categories (panels), for our four population mean
specifications (x-axis), both in-sample (solid lines) and forecasting ahead four months
(dotted lines) using three measures of fit: micro-averaged sensitivity (dark green circles)
and specificity (red triangles), and macro-averaged F1 (light blue squares), which is the
harmonic mean of precision and recall. A lift greater than zero means GPDH is performing
better than FO on the given fit measure. For more details about these statistics, please
see Web Appendix D.

is lower when using a fixed offsets model than when using GPDH in 75% of all cases, with a
maximum difference (GPDH SD - FO SD) of .244 and a minimum difference of only -.034.
These results indicate a robust and oftentimes significant downward bias in the spread of
FO estimates versus those from GPDH.

Moreover, when we contrast the mean curves recovered from a GPDH specification
with those from the FO specification, we see the FO mean curves are biased toward zero.
To illustrate this we develop what we call the signed relative difference (SRD) statistic:

SRDp =
1

T

T∑
t=1

sign
(
µ̂GPDH
p (t)

)
×
µ̂GPDH
p (t)− µ̂FOp (t)

1 + |µ̂GPDH
p (t)|

, (15)

where µ̂GPDH
p (t) is the estimated value of the mean model at time t under the GPDH

specification, µ̂FOp (t) the estimated value of the mean model at time t under a fixed-offsets
(static) heterogeneity assumption, and sign(x) = 1 if x ≥ 0 and −1 if x < 0. This statistic
will always be positive when µ̂GPDH

p (t) is farther away from zero than µ̂FOp (t). Moreover, its

magnitude reflects how much further µ̂GPDH
p (t) is away from zero than µ̂FOp (t), on average,

on a relative basis. In Figure 8, we plot the estimated signed relative differences, as a
function of η, the magnitude of dynamic heterogeneity. From this, we see first that all
but one of the SRD statistics are positive, across all categories and parameters, lending
strong empirical support to an attenuation bias in mean parameter estimates when static
heterogeneity is assumed around a dynamic mean model. Moreover, we argued previously
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Figure 8: The signed relative difference (SRD) statistic as a function of the posterior mean estimate
of the hyperparameter η. A positive SRD indicates that the mean function estimated
using a fixed-offsets assumption is closer to zero than when using GPDH. The magnitude
of SRD indicates how different these values are, with a higher SRD indicating a bigger
standardized difference between FO and GPDH. We expect the attenuation bias to grow as
the magnitude of dynamic heterogeneity (η) grows, and see this reflected in the increasing
SRD statistics. We omit one outlier with η > 7 to aid visualization.

that, as the magnitude of dynamic heterogeneity (η) grows, the attenuation bias worsens.
The upward trend in Figure 8 is consistent with this prediction.

Individual-level Elasticities Accounting for dynamic heterogeneity is important for ac-
curately computing decision-relevant quantities, including time-varying price elasticities.
By both correcting for the attenuation bias, and estimating intra-individual dynamics, the
individual-level decision variables inferred from GPDH may be dramatically different than
those based on a static heterogeneity specification. To illustrate this, we consider own
price elasticity of demand across static and dynamic heterogeneity specifications. For each
observation in our data, for each brand b, we compute the price elasticity using the stan-
dard multinomial logit formula, ξibtm = β̂Pi (t) × Priceibtm × [1− pibtm] , where β̂Pi (t) is the
estimated posterior mean of the price parameter for person i at time t, and pibtm is the
probability that person i chooses brand b at time t, observation m, under the model. For
individuals with multiple observations per time period, we average the elasticities, yielding
a final elasticity estimate, ξ̄ibt. We compute the elasticities for both of the models.

First, we consider an illustrative case of a tissues consumer, selected to showcase the
differences in elasticities estimated by dynamic versus static heterogeneity. In Figure 9,
we present two sets of plots: in the first, we show the same consumer’s choice parameters
under both dynamic (GPDH) and static (FO) heterogeneity assumptions. In the second,
we show the implied elasticities over time, for all periods in which the consumer was active.
Comparing GPDH to FO heterogeneity in the top panel, we see two things: first, the
consumer’s brand intercepts deviated significantly from the pattern implied by FO, due
to individual-level dynamics. This effect is especially interesting for Brand 2, where the
consumer went from negative to positive. Second, we see that the price curve is significantly
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Figure 9: Top: The individual-level parameters for an illustrative consumer for the three brand
intercepts and the price coefficient in the tissues category, across the two heterogeneity
specifications. Bottom: the implied own price elasticities for the same consumer.

underestimated using FO, which is likely driven by the attenuation bias. Taken together,
these effects produce two effects in the elasticities: first, in almost all cases, the price
elasticity is underestimated by roughly 50%. Second, we see the brand intercept dynamics
spill over into the price elasticities, with very different patterns implied, especially for Brands
1 and 2.

This example builds intuition around why we expect to see differences between decision
variables under dynamic versus static heterogeneity assumptions. Such differences in elas-
ticities are not limited to special cases. In fact, they are widespread across all categories.
To assess these differences more generally, we compute the percentage difference in elastici-
ties from assuming static versus dynamic heterogeneity: PDibt = (ξ̄GPDH

ibt − ξ̄FOibt )/ξ̄GPDH
ibt . We

present summary statistics for the distribution of PDibt across individuals, brands, and time
periods in Table 2. We can see that, on average, individual-level elasticities are underesti-
mated by using static instead of dynamic heterogeneity specifications. Moreover, the tails
on the distribution are large, indicating that, for some people, the difference in estimated
price elasticity between static and dynamic heterogeneity specifications is quite significant.

The Great Recession In the previous sections, we showed the applicability of GPDH to
targeting and pricing. In this section, we show how GPDH can also be used by researchers to
nonparametrically understand the impact of events, like the Great Recession, on individual-
level consumer preferences. In particular, we use our GPDH estimates to understand the
changes in individual and market-level preferences during the Great Recession. Prior lit-
erature has documented how price sensitivity within categories varies with business cycles
(Gordon et al., 2013), and more generally how preferences for CPG shifted, on average,
during the Great Recession (Cha et al., 2015). Similar to this previous research, we can

23



Category Mean SD 5% 25% 50% 75% 95%

Chips 3.31 4.18 -3.43 1.08 3.35 5.75 9.72
Coffee 16.89 9.59 1.33 10.82 17.42 22.74 30.59
Peanut Butter 10.58 5.24 2.20 7.31 10.47 13.76 19.80
Detergent 12.00 4.30 4.47 10.21 12.11 14.06 18.19
Tissues 6.48 4.60 -.96 3.80 6.29 9.56 14.42
Toilet Paper 9.00 4.80 2.53 5.82 8.22 11.38 18.04

Table 2: Summary statistics for the distribution of PDibt, the percentage difference between GPDH
and fixed-offsets elasticity estimates, relative to the GPDH estimate, across people, brands,
and time periods.

use the individual-level GPDH estimates to compute how the average price elasticity of
demand changed over time during the recession. We, too, find differences in the effects of
the recession on average own price elasticities across the categories, and we include a full
discussion of average price elasticities over time in Web Appendix E.

Beyond mean-level analyses, a key benefit of GPDH is that we can also analyze
individual-level parameter trajectories. By studying how individuals’ curves deviated from
the mean trajectory during the Great Recession, we can nonparametrically analyze how
preferences appear to have changed during that time period. To illustrate how GPDH
individual-level parametric trajectories can be used in this fashion, we created two metrics,
related to the timing and impact of the Recession:

1. Individual-level Maximal Rates of Change. The first metric aims to understand when
preferences changed most rapidly over the course of the data. To measure this, we
again consider the differenced individual-level estimates Diffip(t) = β̂ip(t) − µp(t),
which capture how each individual changed relative to the population over time, and
which are displayed for the tissues category in the bottom of Figure 5. To isolate
periods in which individuals changed most dramatically relative to the population, we
then consider the derivative of Diffip, which we approximate using the slope of locally
linear regressions. Finally, for each consumer, in each category, we select the period
in which the absolute value of this numeric derivative is highest, retaining only those
cases which exhibited significant variation (estimated slope > .05). Mathematically,
this procedure approximates finding:

t∗ip = arg max
t

d

dt
Diffip(t) = arg max

t

d

dt

[
β̂ip(t)− µp(t)

]
. (16)

The distribution of the timing of these maximal rates of change then serves as a metric
by which we can assess the timing of distributional shifts in preferences.

2. Timing of Crossovers. Our second metric isolates the timing of crossovers; that is, the
periods in which individual-level curves crossed over the mean curve by either going
from the bottom part (half) of the distribution to the top part (half), or vice versa.15

15In the case of symmetric marginal distributions, which we often find, “bottom part” is equivalent to
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Figure 10: We present curve timing results for (a) the chips category, and (b) the coffee category. In
each subfigure: At left is the distribution of the timings of maximal slopes for individual-
level curves, with the recession bounded by the dashed lines. At right is the distribution
of the timings of crossovers, again with the recession bounded by dashed lines.

The distribution of the timings of crossovers then allows us to assess the periods in
which preferences appear to have been changing in interesting ways.

Using these two metrics, we find an apparent impact of the recession on individual-level
dynamics and the distribution of heterogeneity which differs by category. In Figure 10a,
for instance, we plot the result for the chips category, where there are striking peaks in
both metrics associated with the beginning and the end of the recession. Similarly, we
find evidence of such peaks in tissues. In other categories, most notably coffee, we find
no evidence of a recession-era effect, as shown in Figure 10b. In fact, in coffee, as well
as in detergent, the most rapid changes in the distribution of parameters appears to be
concentrated toward the ends of the observation window.16 While understanding the reasons
behind these cross-category effects is beyond the scope of the current work, these findings
illustrate the types of analyses enabled by our dynamic heterogeneity framework.

5 Application II: Dynamic Topic Heterogeneity

While heterogeneity in marketing has most often been discussed in the context of consumer
preferences, GPDH is widely applicable. In this section, we apply it to a very different

“bottom half.”
16We include the full results for curve timings across all categories in Web Appendix F.
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domain: modeling the product-level evolution of review content. In particular, we fuse the
latent Dirichlet allocation (LDA) topic model (Blei et al., 2003) with GPDH to capture
dynamic heterogeneity in the evolution of reviews for different products. We apply our
model on a dataset of time-stamped reviews for tablet computers to address questions such
as, (1) how the topics used to discuss tablets have changed over time; (2) how the discourse
about a focal product is affected by the introduction of new products in the marketplace;
and (3) how deviations in product-level topic trajectories reflect the success or failure of the
product. Our focus here is on illustrating how our framework can be used across different
types of data, contexts, and models, and we therefore do not dwell at great length on the
substantive conclusions in this application.

5.1 LDA-GPDH

Our model extends the standard LDA model of Blei et al. (2003) to the case where doc-
uments pertaining to different groups (e.g., products) evolve over time. In particular, we
define a document as the review content of a specific product in a given calendar time period.
We model the evolution of the reviews of these products, indexed i = 1, . . . , N , in calendar
time, t = 1, . . . , T . Products are introduced at different times within those T periods, with
each product’s introduction time denoted by tmin

i . We assume that there are D topics that
summarize the entire discourse across all brands. Topics are probability distributions over
words and capture groups of words that commonly co-occur in the reviews within a time
period. We assume that the topics themselves remain static, but, over time, the topics
which are emphasized in the reviews of a given product i may change. Specifically, we posit
the following generative model:

• Generate each topic d = 1, . . . , D, from a Dirichlet distribution, i.e., νd ∼ Dirichlet(α),
where νdv is the probability of seeing word v under topic d.

• For each topic d = 1, . . . , D − 1, draw the mean rate of seeing that topic over time
using a GP with two length-scales of variation and a periodic component:

µd(t) ∼ GP(0, kLong + kShort + kPer).

This specification mirrors the calendar time structure used in Dew and Ansari (2018).
It captures momentary fluctuations in the prevalence of a given topic, as well as longer
run trends and cyclical variation. We use the squared exponential kernel, which is the
limiting case of the Matérn kernel as ν →∞, for the long kLong and short-run kernels
kshort. For the periodic kernel, we use the periodic variant of the squared exponential
kernel, given by:

kPer(t, t
′;ω, η, κ) = η2 exp

{
−κ sin2

(
π(t− t′)2/ω

)}
,

with a cycle length, ω = 12, to capture monthly cyclicality. The mean rate for the Dth
topic is normalized to zero for identification. Note that any of the population models
described earlier could be used here; we choose the GP mean model to illustrate both
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the flexibility of the mean specification, and to capture short-term and periodic spikes
in chatter at certain times of the year (e.g., holidays).

• For each product i = 1, . . . , N , for each time period t = 1, . . . , T :

– For each topic d = 1, . . . , D − 1, using a Matérn-3/2 kernel, kd(.), draw the
unnormalized topic weights for product i using GPDH to capture product-level
departures from population-level trends:

uid(t) ∼ GP(µd(t), kd(t, t
′; ηd, κd)).

– Set the Dth topic unnormalized weight to zero: uiD = 0

– Compute the normalized topic assignment probabilities:

βid(t) =
exp(uid(t))∑D
j=1 exp(uij(t))

.

– For each word token m = 1, . . . ,Mit in product i’s reviews in period t, draw a
topic assignment for that word: aitm ∼ Categorical(βi1, . . . , βiD).

– Draw the actual word token from the assigned topic’s word weights: witm ∼
Categorical(νaitm).

In some periods, a given product i may not have any reviews. For that period, the param-
eters are interpolated or extrapolated.

5.2 Comparison with Existing Models

The most common dynamic topic model is that of Blei and Lafferty (2006), which is often
referred to simply as the dynamic topic model. In this model the topics evolve over time,
but documents are static, and there is no accounting of heterogeneity. The focus of this
model is solely on modeling the dynamics of content within one group of documents. The
LDA-GPDH model is distinct from this classic dynamic topic model in that it focuses on
the dynamic evolution of content for multiple groups of documents, but assumes that topics
are static. The LDA-GPDH framework is thus suitable for the case where new documents
are added within each group over time: in the case of reviews, we consider the unit of
analysis a single product, where new reviews are continually added over the lifespan of the
product. For other applications, like the modeling of scientific documents within a collection
(e.g., theoretical physics papers), considered by Blei and Lafferty (2006), the documents are
static. However, the words that are used in documents may change, hence requiring the
evolution of the topics themselves. In other words, LDA-GPDH captures heterogeneity in
discourse between groups of documents over time, while the dynamic topic model captures
the evolution of content in a single group.
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A simpler approach to model the evolution of reviews would be to apply the basic LDA
model to documents defined as the composite of all of the reviews posted for a given product
in a given month. Unlike LDA-GPDH, such an approach treats the reviews of a product as
independent across time periods, rather than assuming some consistency of topics within
products over time, thus disregarding the primary unit of analysis (the product). As a
result, the topics identified by the two approaches are substantially different, with LDA-
GPDH finding topics that are consistent within products. For instance, in the case of
tablet computers, LDA-GPDH finds many more topics associated with specific brands,
while independent LDA finds more topics associated with usage and liking. Moreover,
since GPDH shares information across time periods, the topic evolutions estimated using
GPDH are much smoother, allowing researchers to better separate noise from true parameter
dynamics.

5.3 Estimation

Just like in the choice modeling application, we estimate LDA-GPDH using NUTS. As
before, we jointly sample all model parameters, including the individual-level function coef-
ficients, the shared mean function, and the hyperparameters. Unlike in the choice modeling
application, LDA-GPDH has discrete parameters, namely the topic assignments, which
cannot be sampled by NUTS. Hence, during estimation, we marginalize out the topic as-
signments, by computing:

p(witm = v |βi(t),ν) =
D∑
d=1

p(witm = v | aitm = d)p(aitm = d |βid(t)) =
D∑
d=1

νdvβid(t),

where βi(t) = (βi1(t), . . . , βiD−1(t)) and ν = (ν1, . . . ,νD). With this marginalization, the
joint distribution is given by:

p(w|β,µ,ν) =
N∏
i=1

T∏
t=tmin

i

Mit∏
m=1

p(witm |βi(t),ν)
D−1∏
d=1

p(uid(t) |µd(t), κd, ηd)×

p(µd(t)|κ0d,η0d)p(ηd, κd,η0d,κ0d)p(νd). (17)

As before, we run the sampler for 400 iterations (200 warmup).

5.4 Data

We apply our LDA-GPDH formulation to model the evolution of reviews in a single product
category: tablet computers. We use the data from Wang et al. (2013), which contains the
full set of reviews from Amazon for the tablet computer category, from September 2003 to
July 2012.17 We limit our sample to the 43 month span from January 2009 to July 2012,

17For a thorough overview of the raw data, we refer readers to Wang et al. (2013).
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which contains the bulk of the reviews (for context, the first Apple iPad was released in
April, 2010). We further restrict our sample to products that have at least 10 reviews. We
aggregate these reviews at the product-month level to form our evolving document stream
for each product. For the review content, we follow standard text processing procedures:
we first stem the text and eliminate stopwords. We then retain all words appearing in
at least 5% of observations, but not in more than 75%, where observations are period
(month)/product pairs. Finally, we retain the 1000 words with the highest average term
frequency-inverse document frequency (TF-IDF) scores across documents. This resulted in
a dataset of 2,686 observations across 265 products.

We ran LDA-GPDH on this data using D = 15 topics. We selected the number of
topics by running the standard LDA model multiple times with different number of topics.
We found that 15 topics is the most that can be used before the topics become redundant
or difficult to interpret.

5.5 Aggregate Results

We start by describing the topics learned by the model, and how their prevalence varies, on
average, over time. In Table 3, we show the 10 words with the highest posterior probabilities
for each topic. We see that the LDA-GPDH learns meaningful topics that tend to fall into
three broad categories: functional topics, capturing aspects of how the products are used or
function, especially topics 1, 3, 7, 10, 12, 13, 14; experiential topics, capturing consumers
experiences with their purchases, especially topic 5; and brand topics, discussing distinct
brands and products, especially topics 2 (Motorola XOOM), 4 (ASUS Transformer), 6
(Windows), 8 (Samsung), 9 (Apple), 11 (Amazon Kindle), and 15 (HP Touchpad). Note,
however, that these distinctions are not always clear: topic 10, for instance, primarily
discusses apps, reading, and downloads, but also has the word Kindle; topics 1 and 9
mention Apple products, but also functional words; and topic 12 has “archo,” which is the
stemmed form of ARCHOS, a tablet manufacturer, in addition to a number of functional
words.

While the topics are static, the prevalence with which they are discussed changes.
Figure 11, plots the mean model µd(t) for a selection of topics, reflecting the degree to
which those topics are emphasized, relative to the baseline topic (Topic 15: HP Touchpad).
We also plot a normalized version, given by:

md(t) =
exp(µd(t))∑D
`=1 exp(µ`(t))

,

which corresponds to the topic weights of the “average” product. We can see in Figure 11
that the Experiential topic (topic 5), has remained the predominant topic over time, for
the average product. Other topics have waxed and waned in their prevalence. For instance,
we see the relatively recent emergence of topic 10 about Reading, reflecting the increasing
prevalence of this use-case in the market. We see the sharp decline in discussion of Netbooks
and the Windows operating system, reflecting the growing acceptance of tablets as their own
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Topic ηd κd Terms with the highest posterior probabilities

1. Early Apple Features .07 .09 devic, book, iphon, ipod, kindl, netbook, easi, flash, look, pdf
2. XOOM Android 2.25 .22 xoom, android, app, market, honeycomb, devic, rom, flash, googl, motorola
3. Netbook Comparisons 2.84 .33 screen, netbook, touch, keyboard, batteri, comput, lenovo, dell, upgrad, mode
4. ASUS Transformer 2.63 .21 asus, android, app, transform, thrive, acer, issu, playbook, keyboard, usb
5. Experiential .80 .09 screen, can, like, will, just, one, good, great, time, want
6. Windows 3.22 .10 window, X7, keyboard, need, devic, comput, slate, can, laptop, pen
7. Android Apps 2.00 .16 android, market, input, devic, cobi, googl, download, flash, kyro, amazon
8. Samsung Galaxy 2.53 .36 app, tab, android, samsung, galaxi, devic, phone, X7, card, camera
9. Apple and iOS 2.47 .13 io, appl, can, X2, app, devic, like, laptop, one, new
10. Reading 2.03 .32 app, one, book, read, download, kindl, love, bought, io, can
11. Kindle Fire 2.35 .07 fire, kindl, amazon, book, read, love, like, can, devic, great
12. Media Playback 3.36 .10 archo, devic, android, app, video, player, music, firmwar, touch, file
13. Features and Development .51 .06 develop, electron, audio, ad, charg, dollar, beauti, check, come, intern
14. Usage 2.56 .71 devic, app, will, io, amazon, one, screen, video, web, download
15. HP Touchpad - - touchpad, hp, app, android, price, os, great, devic, electron, mani

Table 3: Summary of the LDA-GPDH Results: In the first two columns, we show the GPDH hyper-
parameter estimates across the 14 unnormalized topics. Higher values of ηd reflect more
spread around the mean function, while higher values of κd reflect less smooth departures
from the mean model, reflecting more brand-specific deviations from the mean trends. In
the final column, we show the top 10 words characterizing each topic, selected by sorting
posterior term probabilities.

product class, with distinct uses from netbooks and personal computers. We also see the the
rise of the Apple and Samsung topics around the times of their tablet introductions. While
these market dynamics make intuitive sense, understanding how individual products evolved
relative to these trends is more interesting. We thus turn our attention to understand
product-level deviations from these mean trends, which can be recovered from the GPDH
specification.

5.6 Dynamic Heterogeneity in Topic Weights

Just as in the choice application, GPDH in our topic model captures individual-level depar-
tures from the mean patterns, reflecting in this case product-specific discourse trajectories.
The properties of those departures are captured by the two GPDH hyperparameters, which
we present for each topic in Table 3. In particular, we find that there is significantly less
dynamic heterogeneity for topics 1 and 5 than for the others. As can be seen in the table,
topic 1 discusses fairly generic tablet-related words, in addition to discussion of the iPhone
and iPod. Moreover, as we saw in Figure 11, this topic sharply declined toward the end
of the observation window. An interpretation of these patterns is that this topic captures
comparisons to iPhones and iPods, which were prevalent before tablets became mainstream;
after the popularization of the iPad, these topics were no longer discussed, and thus there
was minimal discussion across all brands. Topic 5 captures fairly generic experiential words,
and so it is again not surprising that these words occur somewhat more uniformly across
brands than other topics. Topics 6 and 12 have the most heterogeneity. Both of these topics
reflect somewhat technical language, as well as words associated with niche brands in the
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Figure 11: We plot the µd(t) and md(t) functions, where each panel is one topic, for a selection of
the 15 topics. The solid line is md(t), corresponding to the scale on the left axis; the
dashed line is µd(t), corresponding to the scale on the right axis. The x-axis is months.

tablet space (ARHOS, Windows). Thus, a large degree of variation in discussion is to be
expected.

5.7 Market Structure Analysis

The key benefit of using GPDH in topic modeling is that we are able to obtain product-
specific topic trajectories: for a given product, how did discourse for that product change,
relative to how discourse, in general, changed? These product-level dynamics can shed
light on market structure, by studying changes in the discourse for one product during time
periods in which potentially competing products were introduced. For example, how did
the introduction of Amazon’s Kindle Fire, a highly anticipated Android tablet related to
their popular Kindle e-reader, change the discourse in the reviews of existing products?
Were niche products affected differently than mainstream products? Was the change in
discourse in these products primarily related to brands and products, or did it relate to
the functional aspects of the products, too? Answering each of these questions requires
understanding how the discourse surrounding individual products changed over time.

In this analysis, we focus on the years 2011-2012, which is toward the end of our
observation window. During this time, many “next generation” products were introduced,
including a new generation of popular Android-based tablets, as well as Amazon’s Kindle
Fire, and two new versions of Apple’s iPad. In particular, we saw the introduction of
Amazon’s Kindle Fire tablet at the end of September 2011 (period 33 in our data), and
the introduction of the short-lived “new iPad” (or iPad 3) in April 2012 (period 40 in our
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Figure 12: Dynamic topic weights for the iPad, estimated by GPDH, for six selected topics. We
also plot the estimated mean probabilities for the topics. The yellow (leftmost) overlaid
rectangle is the release of the Amazon Kindle Fire tablet, while the green (rightmost)
rectangle is the release of the Apple iPad 3.

data).18 To understand how these introductions affected product-level chatter, and what
this may imply about market structure, we begin by considering a couple of case studies,
before reporting results across products.

Case Study: Reviews of the iPad 2 Figure 12 shows several of the dynamic topics learned
for the iPad 2 (32GB version). In the figure, we highlight in yellow (the leftmost overlaid
rectangle) the release window of the Kindle Fire, and in green (the rightmost rectangle) the
release date of the iPad 3. The first thing of note is the significant dynamics present during
the release of the Kindle. We see that topic weights during that time shifted from Reading
to Experiential, as well as to topics about the Apple brand and the iPad. There was also
a notable uptick in chatter at that time about Samsung products, reflecting the launch of
a new Samsung tablet simultaneous with the Kindle Fire, and an uptick in chatter about
Media Playback. After the release of the newer generation iPad 3, we also find changes,
this time in chatter about Apple/iOS, about some competing Android-based products (e.g.,
ASUS products), and again about Reading.

These patterns reflect different aspects of the tablet market structure. First, while
the Kindle Fire was Android-based, it appears to have attracted significant attention even
among iPad users, especially when considering reviews that focus on reading. Previous

18The period of the release of a product and the period of its first review are sometimes not the same,
most often due to products being reviewed before the official release, or slightly different release dates of
different versions of the same product. We thus consider a 3 period (month) window of time around the
official release dates as the “release window” of a focal product.

32



5. Experiential 8. Samsung Galaxy 9. Apple/iOS

10. Reading 12. Media Playback 4. ASUS Transformer

28 32 36 40 28 32 36 40 28 32 36 40

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.000

0.001

0.002

0.003

0.004

0.00

0.05

0.10

0.15

0.03

0.06

0.09

0.4

0.5

0.6

0.7

0.8

Period

To
pi

c 
W

ei
gh

t

Curve

Mean

Brand

ASUS Eee Pad Transformer (32G); Launched: Late April 2011

Figure 13: Dynamic topic weights for the ASUS Eee Pad Transformer, estimated by GPDH, for six
selected topics. We also plot the estimated mean probabilities for the topics. The yellow
(leftmost) overlaid rectangle is the release of the Amazon Kindle Fire tablet, while the
green (rightmost) rectangle is the release of the Apple iPad 3.

versions of the Kindle were electronic readers, but not full fledged tablets. With the Kindle
Fire, Amazon entered the tablet market, but retained its emphasis on reading. In the
ways in which the iPad reviews changed during this period, it appears that this move did
attract attention, with customers who previously reviewed the iPad for its reading capacity
largely having vanished after the Fire’s introduction. The changes after the introduction
of the newest iPad also reveal aspects of the market structure. The uptick in discussion
of competing Android products and reading are consistent with a change in the customer
base after the new iPad release: customers who continued buying the older version are
likely customers who are more price sensitive, or are looking for a tablet with more basic
functionality. Thus, we see an increase in chatter about competing but lower priced brands,
as well as a focus on a more basic functionality (reading).

Case Study: Reviews of the ASUS Transformer Figure 13 plots the dynamics over
the topics for the ASUS Eee Pad Transformer (32GB version). Immediately, we can see
differences between this and the iPad. First, there are clear “fixed offset” style differences
versus the iPad example. For instance, the ASUS brand topic is consistently higher for the
ASUS Transformer’s reviews than it was for the iPad’s reviews. However, there are also
clear differences in the dynamics of the topic weights, and departures from the mean-level
trends, which are captured by the flexible GPDH framework. For example, similar to the
iPad, we also see a rise in discussion of Experiential aspects over the product’s lifecycle,
reflecting a shift from more functional descriptions of the product to more experiential ones.
In terms of responses to product releases, the ASUS topics appear to have been significantly
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affected by the release of the new iPad, but not as much by the release of the Kindle Fire.
While there was a significant spike in chatter about Reading after the release of the Kindle
Fire, it was short-lived. However, after the release of the iPad 3, we see a huge bump in
chatter about Apple and the iPad, and a corresponding drop in chatter about the ASUS
brand.

Topic dynamics again reflect the tablet market structure. In addition to the dynamics
plotted in Figure 13, several other topics are high toward the start of the ASUS Trans-
former’s lifecycle, capturing different competing brands or products: topic 2, about the
Motorola XOOM and Honeycome Android operating system, for instance, started out high.
Similarly, topic 3, about netbooks and touchscreens, started out high, which is especially
relevant since the Transformer had an attachable keyboard option. Likewise, topic 6 about
Windows started out high. Early reviewers emphasized comparisons with these products,
reflecting the market position of the Transformer as a mix of these products. The lack
of impact of the Kindle Fire’s introduction, together with the seemingly large impact of
the iPad’s also reflects aspects of the product’s use: the Transformer was largely aimed at
replacing laptops as a mobile computing system, and did not emphasize as much the reader
aspect. When the new iPad was released, it likely attracted significant attention from this
customer base, as reflected in these changes in topics. Finally, the significant but short-lived
spike in chatter about the Galaxy also appears to reflect comparisons to that product upon
its release, but with no lasting impact, suggesting perhaps different user bases.

Results Across Products Finally, we consider patterns of product-level topic evolution
across all of the products in our dataset. Just as in the choice modeling application, where
GPDH allowed us to define new metrics to capture interesting dynamics during the recession,
we can also consider new metrics based on dynamic heterogeneity for topic weights, to
systematically characterize product-level review dynamics. In particular, we consider a
question that was raised by our case studies: during which periods of time did individual
products exhibit the most change in topics? To answer this, we consider the following
metric:

δit =
1

K

K∑
k=1

∣∣∣β̂ik(t)− β̂ik(t− 1)
∣∣∣ ,

which reflects the average per period change (from t−1 to t) in the estimated product-specific
topic weights, β̂ik(t). We find that the shape of the empirical distribution of δit across i
does not change very significantly with time. However, the positions of individual products
within that distribution vary considerably. To better understand when products undergo
the biggest changes in topic weights, we look again at two focal periods: the period after
Kindle’s introduction (t = 34), and the period after iPad 3’s introduction (t = 40). Among
the top 20 δit statistics for t = 34, we find many eReader products, like the Pandigital Planet
Android 7-Inch Multimedia Tablet and Color eReader with Kindle. In fact, we find four
Pandigital products among the top 20 δit statistics in that period, indicating substantial
competition between that brand and the Kindle Fire. For t = 40, we most notably find a
variety of previous iPad versions, which is intuitive, as the release of a new version of the
iPad likely changed the discourse about prior versions. Although many of these results are
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intuitive, this analysis highlights the types of analyses afforded by dynamic, product-level
topic trajectories, which can be estimated by a GPDH specification.

6 Conclusion

We developed a novel methodology for capturing dynamic heterogeneity in models of para-
metric evolution. Across two applications of our GPDH framework to essential marketing
tasks, we showed the rich insights that come from modeling the evolution of the distribu-
tion of cross sectional heterogeneity. In our first application, we illustrated the importance
of capturing dynamic heterogeneity in choice models with evolving sensitivities, and the
managerial and economic insights uncovered by our GPDH specification. In our second ap-
plication, we showcased the wide applicability of GPDH, by employing it in a very different
context: a topic model capturing the product-level evolution of review content. We applied
this model to reviews of tablet computers, and used these product-level topic trajectories
to shed light on aspects of market structure.

Both applications demonstrate the versatility of the GPDH specification. As GPDH is
a way of specifying heterogeneity for the parameters of a focal likelihood, around a particular
mean model, it can be used with a number of different likelihoods and dynamic mean models
of interest. In this work, we showcased five distinct mean models, ranging from Kalman
filter-like state space models, to time series specifications, to multi-component Gaussian
process models. As an extension, we also suggested how to incorporate the drivers of
dynamics within mean models, though we did not have the appropriate data to demonstrate
that use case. Additionally, we discussed briefly how endogeneity concerns can be handled
via standard control function methods. While we focused only on the benefits of dynamic
heterogeneity, and thus did not fully explore these extensions, we note that they may
be important for researchers interested in adapting our framework in other substantive
contexts.

Our work has several limitations that suggest opportunities for future research. First,
especially in Application I, we only observe existing customers. As a result, we cannot rule
out that the observed patterns of heterogeneity are driven by different customer lifetimes
(i.e., left censoring). However, the patterns of dynamics we uncover still correctly reflect the
changes that occur at a given point in calendar time, regardless of the underlying source of
those dynamics. Moreover, given the mature and common nature of the studied CPG cate-
gories, we do not expect left censoring to be the primary driver of our results. In addition,
due to our emphasis on the methodological contribution of GPDH, we did not fully explore
some of the interesting substantive phenomena that were revealed by our GPDH specifica-
tion. In particular, in Application 1, we noted the prevalence of shifts in brand intercepts
versus price coefficients during the Great Recession, as well as the heterogeneous impact of
the recession on different categories. In Application 2, we uncovered associations between
discourse and product lifecycles. Understanding the mechanisms behind these phenomena is
beyond the scope of this work, but may prove interesting topics for future research. Finally,
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from a computational perspective, our implementation of GPDH using MCMC methods
is somewhat slow. Recent advances in Bayesian inference, including variational methods
(e.g., Ansari et al., 2018), may prove valuable in accelerating the computation time for these
models.

Lastly, it is worth noting that while we used GPDH in the context of dynamic hetero-
geneity, our framework is generally applicable for modeling collections of functions defined
on any index, not just time. Other use cases may include spatial modeling and functional
modeling of variables. As the modeling of both heterogeneity and dynamics is crucial to
marketing, we hope that GPDH will be used and extended for research across a wide variety
of domains.
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Web Appendix

A: Kernel Degree Selection

As described in the body of the paper, not all parameters of the Matérn kernel are consis-
tently estimable. Hence, we follow common practice and fix the degree parameter ν to a
half-integer value, or to ∞, which corresponds to the squared exponential kernel. By fixing
ν to a half-integer, the functional form of the kernel reduces to a product of a polynomial
term and an exponential term, which facilitates computation, compared to the original
Bessel function formulation. Specifically, we consider the values ν = 1

2 , 3
2 , 5

2 . This follows
the advice of Rasmussen and Williams (2005), who argue that values of ν > 5

2 are difficult to
distinguish from ∞, given typical data sizes. In the GPDH settings, this lack of distinction
is even more the case, as the GPs are being specified several levels away from the data, as
governing the parameters of a latent utility (or the mean of those parameters).

The ν parameter controls the level of differentiability of the function draws, as illus-
trated in Figure 14. Thus, if a less smooth process is desired, or theorized a priori, the
researcher may choose to use a lower value ν (e.g., ν = 1/2). Alternatively, cross-validation
may be used to set the value of ν. In our Application I, we find little difference both in
terms of fit and prediction across different values of the degree parameter. As an example,
we plot a comparison of fit and forecasting accuracy across ν values in Figure 15 for the
Peanut Butter category. The value ν = 3/2 does marginally better in forecasting tasks,
and imposes less stringent assumptions on smoothness, assuming only once differentiable
function draws. Hence, we use ν = 3/2 as our primary specification throughout the paper.
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Figure 14: The impact of the choice of the degree parameter on the level of differentiability or
“smoothness” of the function draws.
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Figure 15: A comparison of the fit and forecasting ability of the GPDH-logit model across different
values of the kernel degree parameter ν, across all non-GP mean models, on the peanut
butter data. We limit consideration to non-GP mean models because of our assumption
that, when using a GP mean, the degree parameter is the same as in the GPDH kernel.
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B: Estimation Details

In this section, we give the explicit forms of the densities used in Equations 14 and 17 for
estimating the models in our two applications.

Application 1 The joint density for the full model given in Equation 14 is reproduced here:

p(y, β, µ, α, φ|X) =

M∏
m=1

p(ym|Xm, {βimp(tm)}Pp=1)×

I∏
i=1

P∏
p=1

p(βip(t)|µp(t),φp) p(µp(t)|αp) p(φp) p(αp).

The individual-level model is a multinomial logit such that

p(ym = j|Xm, {βimp(tm)}Pp=1) =
exp

(∑P
p=1 βimp(tm)ximpjt

)
∑J

`=1 exp
(∑P

p=1 βimp(tm)ximp`t

) .
The GP heterogeneity specification is given by

p(βip(t)|µp(t),φp) = MVN(µp(t),K(t, t;φp)),

where t = {1, 2, . . . , T} represents the vector of time points on which the GP is defined. The
probabilistic representation for p(µp(t)|αp) depends upon the specific mean-model used. For
the ARMA(1) specification, we have

p(µp(t)|αp) = N(α0p + α1p µpt−1 + α2p ζpt−1, τ
2
p ).

Finally, p(φp) represents the PC prior, such that

p(η, κ) =
1

2
λ1λ2κ

−1/2 exp(−λ1
√
κ− λ2η); λ1 = − logαρ

√
ρ0√
8ν
, λ2 =

logαη
η0

.

The last term, p(αp), represents the prior over the parameters in the specific mean-model
used. We chose appropriate diffuse priors for these parameters.

Application 2 The joint density is given by

p(w|β,µ,ν) =

N∏
i=1

T∏
t=tmin

i

Mit∏
m=1

p(witm |βi(t),ν)

D−1∏
d=1

p(uid(t) |µd(t), κd, ηd)×

p(µd(t)|κ0d,η0d)p(ηd, κd,η0d,κ0d)p(νd).
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In the above, p(witm = v |βi(t),ν) =
∑D

d=1 νdvβid(t), where βi(t) = (βi1(t), . . . , βiD(t)) and
ν = (ν1, . . . ,νD). The GPDH term is given by

p(uid(t) |µd(t), κd, ηd) = MVN(µd(t),Kd(t, t, ηd, κd)),

where t = {1, 2, . . . , T} represents the vector of time points on which the GP is defined.
The GP mean-model can be represented as

p(µd(t),η0d,κ0d) = MVN(0,KLong(t, t) +KShort(t, t) +KPer(t, t)).

We used independent PC priors for each of the hyperparametes of the different GPs. The
last term is given by p(νd) = Dirichlet(α).
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C: Additional Choice Modeling Simulations

The simulations in the body of the paper assumed for simplicity that each individual pur-
chased the same number of times. Here, we consider the more realistic case where individuals
differ in the number of observations, with some spending often, and others very infrequently.
Specifically, we vary four aspects of the data-generating process: (1) the number of time
periods in the data; (2) the number of individuals in the data; (3) the minimum number of
purchases needed for an individual to be included in the data; and (4), the variance of the
number of purchases per person. We then study how the results of GPDH differ, in terms
of fit, insights, and computation time.

To investigate the performance of GPDH as a function of all of these inputs, we ran
a series of simulations, varying four aspects of the data generating process: the number
of people (N = 100, 200, 400), the number of time periods (T = 20, 40, 60), the minimum
number of spends per person (mmin = 1, 3, 5), and the variance of the number of spends
per person over the entire time window. We simulated the number of spends, mi, as
mi = mmin + ai, ai ∼ Round[Gamma(1, s)], where s is the scale parameter of the gamma,
and varied s = 2, 10, 20. As before, we assume that the true data generating process is a
GPDH multinomial logit with a GP mean model, and that there are three brands and a
price variable.

Shrinkage Estimator Just like all Bayesian approaches to modeling heterogeneity, GPDH
can be viewed as a shrinkage estimator, wherein individuals’ parameter trajectories are
shrunk toward the mean trajectory. For consumers with very few purchases, their estimated
trajectories mirror the mean function, in terms of both shape and magnitude, with large
credible intervals. For consumers with many purchases, their trajectories are estimated to
be closer to the true, data-generating trajectories. We illustrate this in Figure 16, for a
simulation with 200 people, and a minimum number of purchases of 3. Because of these
shrinkage properties, GPDH can still perform well, even when the number of purchases per
person is small. In Table 4, we show that, across all levels of simulated data sparsity, GPDH
achieves superior in-sample hit rates, compared to the FO assumption.19

Computational Complexity In the GP literature, it is well established that the computa-
tion time for GP-based models scales at O(T 3), where T is the number of unique inputs
(Rasmussen and Williams, 2005). In our applications, the number of inputs is always fixed
at the number of months in the data. In GPDH, there are two additional aspects of the data
size, besides the number of inputs, which may affect scalability: the number of individuals,
and the number of observations per individual.

Across these simulations, we found that mmin and s did not have a consistent effect
on computation time. We plot the effect of N and T in Figure 17. When the number of
time periods is small (T = 20), we see there is little difference in the computation time

19The full set of fit statistics is available from the authors upon request.
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Figure 16: Shrinkage properties of GPDH: at left is a person with only 3 spends; at right is a
person with 60 spends. We see that Person 1’s estimated curves closely follow the mean
function, while Person 2’s estimated curves recover the truth, with some shrinkage toward
the estimated mean function. The shaded bands are 95% credible intervals around the
estimated individual-level trajectory.

Min Spends (mmin) 1 3 5 Overall
Spend Variance (s) 2 10 20 2 10 20 2 10 20

FO .865 .849 .849 .870 .856 .842 .860 .848 .842 .853
GPDH .896 .901 .902 .915 .911 .899 .900 .902 .891 .902

Table 4: Hit rate as a function of data sparsity, comparing the GPDH and FO specifications.
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Figure 17: Average computation time, in seconds, for estimating GPDH on simulated data as a
function of the number of people in the data N (the line colors and patterns), and the
number of time periods T in the data (the x-axis). These results are averaged across
mmin and s.

with respect to N . However, for larger number of time periods, the increase in computation
time from increasing N becomes pronounced. Holding N fixed, we see that the increase in
computation time from changing T is non-linear, consistent with the O(T 3) scaling of GPs
generally.
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D: Full Fit Statistics (Application 1)

In this section, we present more fit statistics. As a whole, all fit statistics imply that GPDH
significantly outperforms statistic heterogeneity, given the same mean model. In the main
body of the paper, we presented several representative fit statistics in Figure 7. In this
appendix, we also plot in Figure 18 the basic hit rates (accuracy) across specifications and
data settings, and in Figure 19 the Watanabe-Akaike Information Criterion (WAIC), which
is a Bayesian measure that measures model fit, penalizing for model complexity. We see
that this measure again supports the idea that dynamic heterogeneity, as captured through
GPDH, better describes the data, even taking into account the added complexity of the
model. Interestingly, we find little difference in fit across mean models, except for a noted
decrease in fit for the restrictive parametric model.

We also include here the full set of fit statistics, averaged across mean models, for all
categories and heterogeneity specifications, in Table 5. Those statistics are based on the
following counts, for a given brand b: True positives (TPb) = the number of observations
where the model predicted the consumer would choose brand b, and the consumer chose
brand b ; False positives (FPb) = the number of observations where the model predicted the
consumer would choose brand b, but the consumer did not choose brand b; True negatives
(TNb) = the number of observations where the model did not predict the consumer would
choose brand b, and the consumer did not choose brand b; and False negatives (FNb) = the
number of observations where the model did not predict the consumer would choose brand
b, but the consumer chose brand b. From these, we compute the following statistics:

• Precision (Prec) - also called the hit rate, equal to TPb/(TPb + FPb),

• Sensitivity (Sens) - also called recall or the true positive rate, equal to TPb/(TPb +
FNb),

• Specificity (Spec) - also called selectivity or the true negative rate, equal to TNb/(TNb+
FNb),

• F1 - the harmonic mean of recall (Sensitivity) and precision.

Finally, we average these across brands in the following ways:

• Macro average: the average of each of the above rates. Intuitively, this aggregation
treats all classes equally, ignoring potential class imbalance.

• Micro average: this aggregation computes the above statistics by summing over b at
each step. Intuitively, this takes into account class imbalance, at the risk of showing
good performance when one class dominates.

• Max: the max over b. Intuitively, this is the statistic for the class that was easiest to
predict.
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• Min: the min over b. Intuitively, this is the statistic for the class that was most
difficult to predict.
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Figure 18: Hit rates (accuracy) across model specifications and data (in-sample and forecast), anal-
ogous to Figure 7
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Figure 19: WAIC across model specifications. Lower indicates better fit, taking into account model
complexity.
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In-sample

Macro Micro Max Min

Category Heterogeneity Prec Sens Spec Prec Sens Spec Prec Sens Spec Prec Sens Spec

Chips GPDH .695 .629 .882 .695 .695 .898 .709 .832 .978 .665 .484 .724
Chips FO .665 .599 .873 .671 .671 .890 .689 .817 .975 .631 .434 .706
Coffee GPDH .782 .754 .940 .780 .780 .945 .804 .844 .985 .756 .675 .879
Coffee FO .729 .696 .926 .726 .726 .931 .763 .805 .983 .673 .608 .854
Detergent GPDH .836 .813 .967 .843 .843 .969 .868 .918 .992 .796 .732 .927
Detergent FO .801 .774 .960 .811 .811 .962 .844 .905 .991 .717 .665 .913
Peanut Butter GPDH .832 .819 .956 .830 .830 .958 .874 .872 .984 .810 .749 .929
Peanut Butter FO .789 .776 .946 .792 .792 .948 .858 .843 .982 .717 .632 .911
Tissues GPDH .762 .751 .916 .761 .761 .920 .776 .788 .970 .741 .703 .866
Tissues FO .717 .704 .901 .718 .718 .906 .735 .752 .963 .701 .630 .840
Toilet Paper GPDH .791 .781 .957 .792 .792 .958 .818 .846 .984 .742 .710 .924
Toilet Paper FO .746 .736 .948 .750 .750 .950 .789 .818 .981 .709 .665 .911

Forecast

Macro Micro Max Min

Category Heterogeneity Prec Sens Spec Prec Sens Spec Prec Sens Spec Prec Sens Spec

Chips GPDH .646 .528 .865 .647 .647 .882 .777 .769 .991 .524 .182 .704
Chips FO .618 .527 .863 .643 .643 .881 .778 .758 .987 .434 .200 .708
Coffee GPDH .631 .629 .904 .652 .652 .913 .756 .718 .967 .522 .521 .812
Coffee FO .615 .607 .900 .634 .634 .909 .753 .699 .969 .492 .521 .810
Detergent GPDH .717 .618 .947 .764 .764 .953 .878 .931 .996 .453 .177 .858
Detergent FO .720 .611 .943 .751 .751 .950 .877 .910 .996 .502 .218 .833
Peanut Butter GPDH .519 .545 .886 .547 .547 .887 .752 .650 .950 .331 .332 .822
Peanut Butter FO .492 .520 .879 .526 .526 .882 .673 .643 .931 .312 .279 .820
Tissues GPDH .558 .559 .846 .545 .545 .848 .712 .735 .924 .459 .470 .768
Tissues FO .541 .539 .840 .529 .529 .843 .699 .706 .923 .445 .458 .759
Toilet Paper GPDH .588 .574 .920 .613 .613 .923 .747 .782 .978 .369 .239 .859
Toilet Paper FO .562 .550 .917 .598 .598 .920 .722 .813 .980 .304 .169 .852

Table 5: Fit statistics average across mean model. The statistics are described above.
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E: Average Elasticity Over Time

Similar to previous analyses of the Great Recession, our GPDH results can be used to
nonparametrically study how price elasticity, on average, changed during the Great Reces-
sion, by simply averaging over individuals. Below, we present the full set of price elasticity
plots over time. In the detergent, chips, and toilet paper categories, we find many brands
experienced significant increases in average price elasticity. This is intuitive as the Great
Recession negatively affected many people’s earnings, which should lead to higher price
sensitivity. Peanut butter and coffee, on the other hand, do not appear to have been signif-
icantly impacted. Finally, tissues appears to have behaved almost countercyclically during
the recession: for all brands in tissues, the average recession-era price elasticity was smaller
than before and after. There are several caveats to this population-level analysis, which
may limit its interpretability or generalizability, and which also limits its comparability to
previous studies, e.g., Gordon et al. (2013). Importantly, in this work, we only modeled
choice conditional on the purchase decision, and do not capture effects like stockpiling. We
also use a relatively lenient rule for retaining consumers in the panel, such that consumers
that purchased at least five times were included. This means our estimates of average price
elasticities may be subject to panelist attrition.
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Figure 20: The average price elasticity of demand across detergent brands over time, as estimated
by the GPDH logit model. The recession era, as defined by NBER, is marked by the grey
rectangle. Overlaid on the estimated average price elasticities is a local linear smoothing
(LOESS).
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Figure 21: The average price elasticity of demand across chips brands over time, as estimated by
the GPDH logit model. The recession era, as defined by NBER, is marked by the grey
rectangle. Overlaid on the estimated average price elasticities is a local linear smoothing
(LOESS).
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Figure 22: The average price elasticity of demand across coffee brands over time, as estimated by
the GPDH logit model. The recession era, as defined by NBER, is marked by the grey
rectangle. Overlaid on the estimated average price elasticities is a local linear smoothing
(LOESS).
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Figure 23: The average price elasticity of demand across peanut butter brands over time, as esti-
mated by the GPDH logit model. The recession era, as defined by NBER, is marked by
the grey rectangle. Overlaid on the estimated average price elasticities is a local linear
smoothing (LOESS).
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Figure 24: The average price elasticity of demand across toilet paper brands over time, as estimated
by the GPDH logit model. The recession era, as defined by NBER, is marked by the grey
rectangle. Overlaid on the estimated average price elasticities is a local linear smoothing
(LOESS).
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Figure 25: The average price elasticity of demand across tissue brands over time, as estimated by
the GPDH logit model. The recession era, as defined by NBER, is marked by the grey
rectangle. Overlaid on the estimated average price elasticities is a local linear smoothing
(LOESS).
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F: Curve Timing Plots
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Figure 26: At left, the distribution of the timings of maximal slopes for individual-level curves in
the detergent category, with the recession bounded by the dashed lines. At right, the
distribution of the timings of crossovers in the chips category, again with the recession
bounded by dashed lines.
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Figure 27: At left, the distribution of the timings of maximal slopes for individual-level curves in the
peanut butter category, with the recession bounded by the dashed lines. At right, the
distribution of the timings of crossovers in the coffee category, again with the recession
bounded by dashed lines.
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Figure 28: At left, the distribution of the timings of maximal slopes for individual-level curves in the
tissues category, with the recession bounded by the dashed lines. At right, the distribution
of the timings of crossovers in the chips category, again with the recession bounded by
dashed lines.
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Figure 29: At left, the distribution of the timings of maximal slopes for individual-level curves in
the toilet paper category, with the recession bounded by the dashed lines. At right, the
distribution of the timings of crossovers in the coffee category, again with the recession
bounded by dashed lines.
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G: Computation Times

We report in Table 6 the computation times for each of the product categories from Appli-
cation 1, for each of the mean model specifications. There is a positive correlation between
the number of people, the number of purchases, and the computation time, although with
only six categories, it is difficult to make further claims about scalability. The average time
across all of the categories was 26 hours.

Category # People # Purchases ARMA GP Param RW Average

Chips 1552 36152 33.6 13.8 25.4 16.9 22.41
Coffee 912 14298 17.6 22.4 15.5 12.2 16.92
Detergent 1117 16784 37.6 40.7 46.6 41.3 41.56
Peanut Butter 1085 16212 18.9 10.7 19.8 16.2 16.40
Tissues 979 15005 18.2 22.1 25.6 21.6 21.89
Toilet Paper 1512 26958 34.6 69.1 27.3 19.2 37.52

Table 6: Computation time, in hours, across the categories and mean model specifications.
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H: Hyperparameter Estimates

Parameter Chips Coffee Detergent Peanut Butter Tissues Toilet Paper

Brand 2 η 1.18 2.29 3.18 1.86 2.01 2.05
κ .02 .02 .02 .03 .03 .02

Brand 3 η 1.71 2.76 1.47 1.82 1.51 1.95
κ .04 .02 .04 .03 .03 .02

Brand 4 η 1.15 2.53 1.24 1.40 1.43 2.96
κ .04 .03 .01 .00 .07 .03

Brand 5 η 2.38 1.83 3.08 2.92
κ .07 .03 .06 .02

Brand 6 η 2.06 1.24
κ .08 .09

Ft/Dsp η .09 .27 .37 .28 .30 .41
κ .04 .00 .01 .00 .01 .03

Price η .65 1.34 2.35 1.22 6.94 .86
κ .03 .02 .02 .02 .02 .02

Table 7: Hyperparameter estimates for application 1, across all categories and coefficients.
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I: Stan Code

Here, we include the Stan code for the GPDH-ARMA choice model.

functions{

real maternk(real x1, real x2, real eta, real kappa, int type){

// NOTE ON THE TYPE INPUT:

// type 0: matern-1/2

// type 1: matern-3/2

// type 2: matern-5/2

// type 3: squared exponential (technically, should be type infinity)

real r = fabs(x1-x2);

real out;

if (type == 0) {out = eta^2 * exp(-kappa*r); }

if (type == 1) { out = eta^2 * (1+kappa*r) * exp(-kappa*r); }

if (type == 2) { out = eta^2 * (1 + kappa*r + pow(kappa*r, 2)/3.0) * exp(-kappa*r); }

if (type > 2) { out = eta^2 * exp(-pow(kappa*r, 2));}

return out;

}

matrix Kmat(int P, real eta, real kappa, int type, real jitter){

matrix[P, P] cov;

for(i in 1:P){

for(j in 1:P){

cov[i,j] = maternk(i, j, eta, kappa, type);

}

cov[i,i] = cov[i,i] + jitter;

}

return cov;

}

// Penalize complexity prior for the hyperparameters of a matern kernel,

// from Simpson et al., 2017

real pc_prior_lpdf(vector hypers, real ktype, real eta_upper, real alpha_eta, real rho_lower,

real alpha_rho){

real degree = ktype + 0.5;

real eta = hypers[1];

real kappa = hypers[2];

real lambda1 = -log(alpha_rho) * sqrt(rho_lower / sqrt(8.0*degree));

real lambda2 = -log(alpha_eta) / eta_upper;

return (log(0.5) + log(lambda1) - 0.5*log(kappa) - lambda1*sqrt(kappa) +log(lambda2) - lambda2*eta);

}

}

data{

int<lower=2> B; // no. goods

int<lower=1> N; // no. customers

int<lower=1> P; // no. periods per customer

int<lower=1> M; // no. total choices

int y[M]; // choice of customer on each choice occassion

matrix[M,B] price; // prices for each good at each choice occassion

matrix[M,B] ftdsp; // display/feature for each good at ...

int<lower=1,upper=N> id[M]; // person id

int<lower=1,upper=P> pd[M]; // period id

int ktype;

}

parameters{
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// mean functions: ------------------------------------------------

vector[P] mu_icept[B-1];

vector[P] mu_price;

vector[P] mu_ftdsp;

// mf var parameters:

real<lower=0> tau_icept[B-1];

real<lower=0> tau_price;

real<lower=0> tau_ftdsp;

// mf arma parameters:

real m_icept[B-1];

real<lower = -1, upper = 1> phi_icept[B-1];

real<lower = -1, upper = 1> theta_icept[B-1];

real m_price;

real<lower = -1, upper = 1> phi_price;

real<lower = -1, upper = 1> theta_price;

real m_ftdsp;

real<lower = -1, upper = 1> phi_ftdsp;

real<lower = -1, upper = 1> theta_ftdsp;

// individual-specific GPs: ---------------------------------------

vector[P] z_icept[N,B-1];

vector[P] z_price[N];

vector[P] z_ftdsp[N];

// lower-level GP hyperparameters (shared across people):

vector<lower=0>[2] hypers_icept[B-1];

vector<lower=0>[2] hypers_price;

vector<lower=0>[2] hypers_ftdsp;

}

transformed parameters{

// individual-specific GPs: ---------------------------------------

vector[P] beta_icept[N,B-1];

vector[P] beta_price[N];

vector[P] beta_ftdsp[N];

// module to contain the covariance matrices:

{

// individual-level kernel matrices: ------------------------------

matrix[P,P] K[B-1];

matrix[P,P] L[B-1];

matrix[P,P] K_price;

matrix[P,P] L_price;

matrix[P,P] K_ftdsp;

matrix[P,P] L_ftdsp;

// IN THIS SECTION: use the user defined functions to create covariance matrices,

// then use the reparametrization of the normal distribution with the cholesky

// decomposition of the kernel to form the mean function and function values

// intercept kernels and function values:

for(b in 1:(B-1)){

K[b] = Kmat(P, hypers_icept[b,1], hypers_icept[b,2], ktype, 1e-8);

L[b] = cholesky_decompose(K[b]);

for(n in 1:N){

beta_icept[n,b] = mu_icept[b] + L[b] * z_icept[n,b];

}

}

K_price = Kmat(P, hypers_price[1], hypers_price[2], ktype, 1e-8);

L_price = cholesky_decompose(K_price);
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for(n in 1:N){

beta_price[n] = mu_price + L_price * z_price[n];

}

K_ftdsp = Kmat(P, hypers_ftdsp[1], hypers_ftdsp[2], ktype, 1e-8);

L_ftdsp = cholesky_decompose(K_ftdsp);

for(n in 1:N){

beta_ftdsp[n] = mu_ftdsp + L_ftdsp * z_ftdsp[n];

}

}

}

model{

// mean function:

vector[P] err_icept[B-1];

vector[P] err_price;

vector[P] err_ftdsp;

vector[P] nu_icept[B-1];

vector[P] nu_price;

vector[P] nu_ftdsp;

for(b in 1:(B-1)){

m_icept[b] ~ normal(0,10);

phi_icept[b] ~ normal(0,2);

theta_icept[b] ~ normal(0,2);

tau_icept[b] ~ normal(0,1);

nu_icept[b][1]=m_icept[b]+phi_icept[b]*m_icept[b];

mu_icept[b][1] ~ normal(nu_icept[b][1], tau_icept[b]);

err_icept[b][1]=mu_icept[b][1]-nu_icept[b][1];

for(t in 2:P){

nu_icept[b][t]= m_icept[b]+phi_icept[b]*mu_icept[b][t-1]+theta_icept[b]*err_icept[b][t-1];

mu_icept[b][t] ~ normal(nu_icept[b][t], tau_icept[b]);

err_icept[b][t] = mu_icept[b][t] - nu_icept[b][t];

}

}

m_price ~ normal(0,10);

phi_price ~ normal(0,2);

theta_price ~ normal(0,2);

tau_price ~ normal(0,1);

nu_price[1]=m_price+phi_price*m_price;

mu_price[1] ~ normal(nu_price[1], tau_price);

err_price[1] = mu_price[1]-nu_price[1];

for(t in 2:P){

nu_price[t]=m_price+phi_price*mu_price[t-1]+theta_price*err_price[t-1];

mu_price[t] ~ normal (nu_price[t], tau_price);

err_price[t]=mu_price[t] - nu_price[t];

}

m_ftdsp ~ normal(0,10);

phi_ftdsp ~ normal(0, 2);

theta_ftdsp ~ normal(0,2);

tau_ftdsp ~ normal(0,1);

nu_ftdsp[1] = m_ftdsp+phi_ftdsp*m_ftdsp;

mu_ftdsp[1] ~ normal(nu_ftdsp[1], tau_ftdsp);

err_ftdsp[1] = mu_ftdsp[1]-nu_ftdsp[1];

for(t in 2:P){

nu_ftdsp[t]=m_ftdsp+phi_ftdsp*mu_ftdsp[t-1]+theta_ftdsp*err_ftdsp[t-1];

mu_ftdsp[t] ~ normal (nu_ftdsp[t], tau_ftdsp);
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err_ftdsp[t]=mu_ftdsp[t] - nu_ftdsp[t];

}

// lower-level hyperparameters (function values)

for(b in 1:(B-1)){

hypers_icept[b] ~ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);

}

hypers_price ~ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);

hypers_ftdsp ~ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);

// individual-specific functions (reparametrization form, don’t save this)

for(i in 1:N){

for(b in 1:(B-1)){

z_icept[i,b] ~ normal(0,1);

}

z_price[i] ~ normal(0,1);

z_ftdsp[i] ~ normal(0,1);

}

// likelihood for each choice occassion:

for(m in 1:M){

vector[B] util;

// compute utility for each good; first good has util = 0

util[1] = beta_price[id[m]][pd[m]]*price[m,1] + beta_ftdsp[id[m]][pd[m]]*ftdsp[m,1];

for(b in 2:B){

util[b] = beta_icept[id[m],b-1][pd[m]] + beta_price[id[m]][pd[m]]*price[m,b] +

beta_ftdsp[id[m]][pd[m]]*ftdsp[m,b];

}

y[m] ~ categorical_logit(util);

}

}

generated quantities{

vector[M] log_lik;

// compute observation-level log-likelihood for computing WAIC/LOO:

for(m in 1:M){

vector[B] util;

util[1] = beta_price[id[m]][pd[m]]*price[m,1]+beta_ftdsp[id[m]][pd[m]]*ftdsp[m,1];

for(b in 2:B){

util[b] = beta_icept[id[m],b-1][pd[m]]+beta_price[id[m]][pd[m]]*price[m,b]+

beta_ftdsp[id[m]][pd[m]]*ftdsp[m,b];

}

log_lik[m] = categorical_logit_lpmf(y[m] | util);

}

}
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